On the Cover: Members of the Ski Country ARC in Colorado wait to start a hidden transmitter hunt on the 2018 CQ World Wide Foxhunting Weekend. Results on page 66, details on page 110.
The most happy and sublime encounters happen in the worst circumstances and under the harshest conditions.

There are enthusiasts who know this all too well because of their love of HF radio.

Results born of certainty and not circumstance. Delivered through impeccable performance. This is our offering to you.

Performance Exceeding Expectations.

HF/50MHz TRANSCEIVER

TS-890S

NEW

- Top-class receiving performance
 - 3 kinds of dynamic range make for top-class performance.
 - Third order intermodulation Dynamic Range (3rd IMDR) 110dB*
 - Reciprocal Mixing Dynamic Range (RIMDR) 114dB*
 - Blocking Dynamic Range (BDR) 150dB*
 - Values are measured examples. (2kHz spacing:14.1 MHz, CW, BW 500 Hz, Pre Amp OFF)
 - Full Down Conversion RX
 - High Carrier to Noise Ratio 1st LO
 - H-mode mixer

- 4 kinds of built-in roofing filters
 - 500Hz / 2.7kHz / 6kHz / 15kHz (270Hz Option)

- roofing frequency sampling band scope
- Band scope auto-scroll mode
- Multi-information display including filter scope

- 7 inch Color TFT Display
- Clean and tough 100W output
- Built-in high-speed automatic antenna tuner
- 32-bit floating-point DSP for RX / TX and Bandscope

Customer Support: (310) 639-4200

www.kenwood.com/usa
Best Service. Best Warranty. Best Value. Ask around and check online; no one beats LDG!

HF ANTIENNA MATCHING ACCESSORIES

High Power

AT-1000PROII
QRO Auto Tuner to 1000W
• Switch L Network
• Dual Antenna
• 1000W SSB / 350W Digital

AT-200PROII
200 Watts Desktop
• Tunes 10:1 SWR
• 2 Year Warranty
• 250W SSB / 100W Digital

AT-600PROII
600 Watts to Mid Size Amps
• Dual Bargraph
• 1.8 to 3.5MHz
• 600W SSB / 200W Digital

Desktop

AT-100PROII
Stand alone desktop tuner - works with most 100W HF Radios.
• Dual Bargraph
• Auto / Semi-Auto Mode
• 125W SSB / 30W Digital

Balun / Unun

IT-100
• AH-3 & AH-4 Compatible
• Includes Interface Cable
• 125W SSB / 30W Digital

• RU 4:1 UNUN
• RBA 4:1 BALUN
• RBA 1:1 BALUN
• 200W SSB

Icom

Tuner dedicated to Icom Radios with seamless integration.

IT-100
• 10:1 SWR

• LED SWR Indicator
• 10:1 SWR
• 125W SSB/30W Digital

Yaesu

Tuner with built in Yaesu/antenna tuner interface.

YT-1200
• 2000 Memories
• For FT-991A, FTdx-1200, FTdx-3000, FT-450 and FT-950
• 125W SSB/30W Digital

YT-100
• 2000 Memories
• For FT-100, FT-857 and FT-897
• 125W SSB/30W Digital

Zero Power

Z-11PROII
Designed for portable and low power applications - zero current draw once tuned.
• 10:1 SWR
• 125W SSB/30W Digital

Z-100 PLUS
• Low Cost
• Highly Portable
• 125W SSB/30W Digital

Z-817
• FT-817/818 Compatible
• Operates on 4 AA's
• 20W SSB/5W Digital

Remote

Remote tuners mounted at or near the feedpoint minimize coax SWR losses.

• Includes Controller/Bias T
• Control Over Coax
• 600W SSB/200W Digital for RT-600
• 125W SSB/30W Digital for RT-100

1445 Parran Rd. St. Leonard, MD 20685
(410) 586-2177
www.ldgelectronics.com
support@ldgelectronics.com
ANNOUNCEMENTS

FEBRUARY

RICHMOND, VIRGINIA — The Richmond Amateur Telecommunications Society will hold the 2019 ARRL Roanoke Division Convention from 8:30 a.m. to 3:30 p.m., Saturday, February 2 at the Exhibition Hall-Richmond Raceway Complex, 600 E. Laburnum Avenue. Website: <http://frostfest.com>. Talk-in 146.880- (PL 74.4). VE exams, DXCC card checking, T-hunt, balloon launch.

SANDY, UTAH — The Utah Digital Communication Conference 2019 will be held from 9 a.m. to 5 p.m., Saturday, February 2 at the Salt Lake Community College Conference Center, 9750 South 300 West. Email: <utadcc@gmail.com>. Website: <http://utah-dcc.org>.

SPRINGFIELD, VERMONT — The Connecticut Valley FM Association will hold its Swap Fest beginning 8 a.m. on Saturday, February 2 at the Springfield VT VFV Post 771, 191 River Road. Email: <swapmeet@cvfma.org>. Website: <www.cvfma.org>. Talk-in 146.780- (PL 110.9).

KGC card checking, T-hunt, balloon launch.

BIG FLATS, NEW YORK — The K2LIM VHF/UHF Contest Club Group will hold its Winter-Fest from 8 a.m. to 5 p.m., Saturday, February 2 at the Richland County Fairgrounds, 750 North Home Road. Contact: Danny, W8DLB, (419) 566-3267. Website: <www.iarcclub.com>. Talk-in 146.94- (PL 71.9). VE exams.

ALBUQUERQUE, NEW MEXICO — The Rocky Mountain Ham Radio, and Cherry Creek Young Amateur Radio Club will hold the 46th Annual Ham Radio Swap-N-Shop from 8 a.m. to noon on Saturday, February 2 at the Cherry Creek Young Amateur Radio Club, 2512 Farmington Road. Contact: Wayne Heinen, NOPCH, (303) 699-6335. Email: <info@n0ara.org>. Website: <www.n0ara.org>. Talk-in 147.15+ (PL 100). VE exams.

LIVONIA, MICHIGAN — The Livonia Amateur Radio Club will hold its 49th Annual Swap-N-Shop from 8 a.m. to noon, Sunday, February 17 at the Civic Park Senior Center, 15218 Farmington Road. Contact: Livonia ARC, P.O. Box 51532, Livonia, MI 48151-0532. Phone: (734) 941-5043. Email: <k8uns@arrl.net>. Website: <www.livoniaarc.com>. Talk-in 145.35- (PL 100).

ALBUQUERQUE, NEW MEXICO — The Rocky Mountain Ham Radio will hold the 2019 New Mexico TechFest from 8 a.m. to 5 p.m., Saturday, February 23 at the Denver Museum of Natural History, 2000 Exposition Boulevard, Denver, CO 80202. Website: <www.mansfieldhamradio.com>. Talk-in 145.520- (PL 100). VE exams.

DANVILLE, INDIANA — The Hendricks County Amateur Radio Organization will hold the 2019 ARRL Southeastern Division Convention from 9 a.m. to 5 p.m., Saturday, February 2 at the Hendricks County Fairgrounds, 1900 E. Main Street. Website: <www.hcara.org>.

TRAVERSE CITY, MICHIGAN — The Cherryland Amateur Radio Club will hold its 46th Annual Ham Radio Swap-N-Shop from 8 a.m. to noon on Saturday, February 9 at the St. Francis High School Auditorium, 213 E. 11th Street. Contact: John Nowak, W7VT, (213) 947-8555. Website: <www.cherrylandarc.com>. Talk-in 146.860- (PL 114.8). VE exams.

MACON FRANCE — Special event station TM16A will air from Sunday, February 10 through Sunday, February 24 to celebrate the 16th Antarctic Activity Week. Frequencies include 10-40 meters mostly on SSB. QSL $2 and a SASE to Francois, F8DVD, directly or through the bureau. Email: <f8dvd@free.fr>. Website: <www.waponline.it>.

YUMA, ARIZONA — The Yuma Amateur Radio Hamfest Organization and the Amateur Radio Council of Arizona will hold the Yuma Hamfest and 2019 ARRL Southwest Division Convention from noon to 5 p.m., February 15 and from 8 a.m. to 5 p.m., Saturday, February 16 at the Yuma County Fairgrounds, 2520 East 32nd Street. Email: <info@yumahamfest.org>. Website: <www.yumahamfest.org>. Talk-in 146.780- (PL 103.5). VE exams, DXCC card checking, T-hunt, balloon launch.

HOXIE, ARKANSAS — The Lawrence County Amateur Radio Club will hold its Winter-Fest beginning 8 a.m. on Saturday, February 16 at the Hoxie Service Center, 500 SW Lawrence Street. Contact: Dale Stratton, (870) 759-2067. Email: <stratton_dale@yahoo.com>. Website: <http://w5wra.org>.

MARLBOROUGH, MASSACHUSETTS — The Algonquin Amateur Radio Club will hold its 2019 Winter Hamfest from 9 a.m. to 1 p.m., Saturday, February 16 at Marlborough 1Lt Charles W. Whitcomb School, 25 Union Street. Contact: Tom Ikeda, KA1OS, (508) 919-6136 (before 9 p.m.). Email: <fleemarket@n1em.org>. Talk-in 147.27+ (PL 146.2). VE exams.

RICKREALL, OREGON — The Salem Repeater Association will hold the 39th Annual Salem Hamfair beginning 9 a.m. to 3 p.m., Saturday, February 16 at the Polk County Fairgrounds, 520 S. Pacific Highway West. Contact: Chris Port, W7CLP, (503) 775-6998. Email: <hamfair@w7ara.org>. Website: <www.w7ara.org>. Talk-in 145.33- (PL 186.2).

BRRIGHTON, COLORADO — The Aurora Repeater Association, Rocky Mountain Ham Radio, and Cherry Creek Young Amateur Radio Club will hold the ARRA Swapfest from 9 a.m. to 5 p.m., Sunday, February 17 at the Adams County Fairgrounds, 97555 Henderson Road. Contact: Wayne Heinen, NOPCH, (303) 699-6335. Email: <info@n0ara.org>. Website: <www.n0ara.org>. Talk-in 147.15+ (PL 100). VE exams.

CIRCULATION STAFF
Cheryl Di Lorenzo, Customer Service Manager

PRODUCTION STAFF
Elizabeth Ryan, Art Director
Dorothy Kehrwieder, Production Director
Emily Leary, Sales Coordinator
Doris Watts, Accounting Department

CQ Communications, Inc.
17 West John Street
Hicksville, NY 11801 USA

CQ Amateur Radio (ISSN 0007-893X) Volume 75, No. 2. Published monthly by CQ Communications, Inc., 17 West John Street, Hicksville, NY 11801, Telephone 516-681-2922. E-mail: cq@cq-amateur-radio.com. Fax 516-681-2920. Web site: www.cq-amateur-radio.com. Periodicals Postage Paid at Hicksville, NY 11801 and at additional mailing offices. Subscription prices (all in U.S. dollars): Domestic-one year $38.95, two years $70.95, three years $102.95; Canada/Mexico-one year $51.95, two years $96.95, three years $139.95; Foreign Air Post-one year $63.95, two years $120.95, three years $189.95; Single copy $6.99. U.S. Government Agencies: Subscriptions to CQ are available to agencies of the United States government including military services, only on a cash on order basis. Requests for options, bids, contracts, etc. will be refused and will not be returned or processed. Electronic versions copyrighted 2019 by CQ Communications, Inc. CQ does not assume responsibility for unsolicited manuscripts. Allow six weeks for change of address.

Printed in the U.S.A.

POSTMASTER: Send address changes to:
CQ Amateur Radio, 17 W. John Street, Hicksville, NY 11801

(Continued on page 28)
FCC Back to Full Strength (But Closed at Press Time)

The Federal Communications Commission once again has five members, with the Senate confirmation of Brendan Carr for a full five-year term (he’d been filling a vacated seat since 2017) and of Geoffrey Starks, who is replacing former Commissioner Mignon Clyburn. They join Chairman Ajit Pai and fellow Commissioners Michael O’Rielly and Jessica Rosenworcel.

Starks moves up from a staff position as Assistant Chief of the Enforcement Bureau. The Senate also confirmed Kelvin Droegemeier as director of the White House Office of Science and Technology Policy. (Tnx K3ZJ)

At press time in mid-January, the FCC remained essentially closed due to the partial shutdown of the federal government. See News Bytes on page 10 for more details on how the shutdown is affecting ham radio.

ARRL to FCC: Incorporate Parity Act Provisions into Part 97

The ARRL has filed a petition for rulemaking with the FCC requesting the inclusion of provisions of the Amateur Radio Parity Act in its rules for the Amateur Radio Service. The bill is intended to protect the rights of amateurs to put up antennas and operate from homes that are covered by restrictive covenants or homeowner association rules, many of which prohibit outdoor antennas and/or any amateur radio operation. The Parity Act bill was passed by the House of Representatives but not by the Senate, and died at the end of the 2017-18 session of Congress.

According to the ARRL Letter, the specific proposal is to add a new rule prohibiting the enactment or enforcement of any private land use restriction that fails to permit amateur radio operation, fails to permit installation of an effective outdoor antenna or does not meet the “minimum practicable restriction” standard that already applies to state and local laws and ordinances. The final language of the Parity Act bill, which the League wants incorporated into the FCC rules, was controversial because some antenna law experts felt it might cause more harm than good, requiring all amateurs living with private land use restrictions to request permission to put up any antenna, including those not currently required to do so.

The FCC had not taken any action on the petition prior to the federal government shutdown in early January.

Initial Qualification Rules Announced for WRTC-2022

The first qualifying event for the 2022 World Radiosport Team Championship (WRTC 2022) will be held this month — the ARRL International DX CW contest — and the WRTC organizing committee has launched its official website and posted the initial qualification rules. According to the ARRL Letter, the committee is trying to make the event accessible for more teams from more places, noting that “WRTC is now for everybody,” not just big guns. The selection areas will be geographically smaller to provide more chances to qualify for all contestants on all continents, and team leaders will select operating partners from the top ten applicants who did not qualify as team leaders. WRTC 2022 will be held in Bologna, Italy, the birthplace of Guglielmo Marconi. The official website (English version) is at <http://wrtc2022.it/en/>.

New General Class Exam Questions Released

The question pool from which General Class amateur radio license exams will be composed starting this coming July has been released. According to the National Conference of Volunteer Examiner Coordinators, the new Element 3 question pool will be used from July 1, 2019 to June 30, 2023. Questions (including one corrected diagram) may be downloaded at <https://tinyurl.com/y7pwoyzm> in .docx, .pdf or .txt format (with a .jpg option for the corrected diagram).

Satellite Roundup

The first geosynchronous amateur radio satellite successfully orbited was undergoing in-orbit testing in early January. AMSAT-DL, Germany’s amateur satellite organization, was conducting the transponder tests on the Phase 4-A, or Es’hail-2, satellite. Owned by the Qatar Satellite Company, Es’hail 2 has been moved to its permanent orbital position over Africa at 25.5° east longitude. According to AMSAT-UK, the satellite is expected to provide continuous access to hams from Brazil to Thailand.

If you think packet radio is dead, don’t look up. A new packet system has been delivered to the International Space Station, where it was awaiting installation at press time. According to the ARRL Letter, the original packet system aboard the space station relayed nearly 89,000 messages, or roughly 250 per day, in the first half of 2017 before failing in July of that year. The original system had been in regular use for some 17 years. Timing of the new installation will depend on crew availability.

Two amateur satellites carrying D-STAR payloads were launched in late December aboard a Russian Soyuz flight. As of press time, beacon transmissions had been successfully received from both D-STAR-ONE-Sparrow and D-STAR-ONE-iSAT. A third ham satellite was deployed on the same launch, this one carrying a packet digipeater on 70 centimeters.

Finally, in satellite news, the AMSAT News Service reports that a Polish student satellite — PW-Sat2 — with a downlink-only transmitter of 435 MHz, deployed a student-built deorbiting sail it was intended to test. Video of the deployment is available on YouTube at <https://tinyurl.com/y8hfuqza>.

2019 YOTA Camp to be in Bulgaria

The Bulgarian Federation of Radio Amateurs will be hosting this summer’s ninth annual Youngsters On The Air (YOTA) camp in Bulgaria. The camp will be held August 23-25 at the International Scientific and Technical Center “Stara Zagora” in Stara Zagora, Bulgaria. The camp will provide more chances to qualify for all contesters on all continents, and team leaders will select operating partners from the top ten applicants who did not qualify as team leaders. WRTC-2022 will be held in Bologna, Italy, the birthplace of Guglielmo Marconi. The official website (English version) is at <http://wrtc2022.it/en/>.
CONTENTS
FEBRUARY 2019 • VOLUME 75 NUMBER 2

66 COVER: HOMING IN
Tales of the 2018 CQ World Wide Foxhunting Weekend
By Joe Moell, KØOV

Members of the Ski Country Amateur Radio Club in Colorado wait to start a hidden transmitter hunt on the 2018 CQ World Wide Foxhunting Weekend. Details on page 66. (Cover photo by Bob Cutter, KIØG)

FEATURES
12 QRP, MARCONI, AND ME: Photo Essay of a Hamming Vacation to Italy
By Don Minkoff, NK6A

20 TRAVELING LIGHT: QRP WITH AN SDR RADIO AND A WINDOWS® TABLET
By Rick Lawn, W2JAZ

24 A35EU: DXPEDITION TO THE KINGDOM OF TONGA
By Ronald Stuy, PA3EWP

31 CQ REVIEWS: SOTABEAMS TACTICAL 7000HDS PORTABLE ANTENNA MAST
By R. Scott Rought, KA8SMA

34 HOW I WORKED 100 DX ENTITIES QRP, CW MOBILE
By Bruce A. Manning, NJ3K

38 QRP ON THE CRUISE OF A LIFETIME
By Frank Kozel, K9GH

40 AN IDEAL LOW CURRENT AND ULTRA HIGH RESISTANCE METER
By John Clark, K2AOP

46 BUILD AN AMPLIFIED ABSORPTION WAVEMETER:
Improve Sensitivity to Really Low RF Signals
By Dr. Sam Green, WØPCE

50 A LITTLE HELP FROM THE KITCHEN: N4KYW Offers a Simple Solution to House QRP Kits
By Howard A. Goodman, N4KYW

54 SOUTHERN CALIFORNIA RTTY HISTORY: ...And Its Continued Popularity Today
By Paul Signorelli, WØRW

56 MATH’S NOTES: A Simple High-Power Optical Communications System
By Irwin Math, WA2NDM

58 THE LISTENING POST: A Visit to the Medium Waves
By Rich Moseson, W2VU & Mark Taylor

63 CQ WORLD WIDE: Amateur and SWL News From the Southern Hemisphere and Beyond
By Tom Smerek, AA6TS

71 QRP: LOW POWER COMMUNICATIONS: KA8SMA’s Top 10 Reasons for operating QRP
By R. Scott Rought, KA8SMA

74 ANALOG ADVENTURES: Small Signals
By Eric Nichols, KL7AJ

76 KIT-BUILDING: 30 Meters, Anyone? and Just Mousing Around
By Joe Eisenberg, KØNEB

80 LEARNING CURVE: Learning Through Involvement
By Ron Ochu, KO6Z

86 ANTENNAS: E- and H-Field Antennas
By Kent Britain, WA5VJB

88 MOBILING: Classic Cars — Classic Radios
By Jeff Reinhardt, AA6JR

COLUMNS

56 EMERGENCY COMMUNICATIONS:
Emergency Communications and Accessibility
By Walt Palmer, W4ALT

91 VHF PLUS: Meteors and Winter Es
Keep the Magic Band Magical
By Tony Emanuele, K8ZR

94 AWARDS: Focus on CQ Awards: The CQ DX Awards
By Staff

96 DX: The Most Wanted Countries ... and Why
By Bob Schenck, K2OQ

100 CONTESTING: Realtime Contest Scoreboards on the Web
By David Siddall, K3ZJ

107 PROPAGATION: The Solar Wind and Storm-Triggering Holes
By Tomas Hood, NW7US

DEPARTMENTS

2 ANNOUNCEMENTS

3 HAM RADIO NEWS

8 ZERO BIAS

9 OUR READERS SAY

10 NEWS BYTES

30 SPURIOUS SIGNALS

57 BEHIND THE BYLINES

79 CHRISTINA’S STORY

110 ON THE COVER

112 HAM SHOP
Check these AR-DV1 Features:

- Wide band coverage from 100kHz to 1300MHz*
- Computer control for easier programming and monitoring operation
- Field upgradeable with downloads from the AOR website
- A micro USB computer interface
- Built-in SD/SDHC card reader for audio recording
- Higher 1st IF frequency 1705 MHz provides higher image rejections
- CSV memory data capability for frequency uploads/downloads and firmware updates
- 2000 memory channels (50 channels X 40 banks)
- Alpha-numeric channel labels
- Offset reception and priority channel selection
- Auto-notch filter
- Noise reduction
- Voice inverter
- Discriminator output

Get your hands on the industry-leading analog and digital voice receiver that automatically recognizes and monitors popular digital modes including APCO P25, DMR, dPMR™, NXDN™, MOTOTURBO™, D-Star™, Digital CR, Yaesu System Fusion, Kenwood and Alinco EJ-47U formats. You also get analog AM, WFM, NFM, CW and Upper & Lower Sideband reception.

Packed with features like a SD/SDHC card to record audio, back up its 2,000 memories or update its field-upgradeable firmware, the AR-DV1 can operate on its own or using computer control through its micro USB port. The multi-purpose display shows the digital or analog mode, DMR color codes, channel IDs, P25 NAC Codes and more!

The AR-DV1 can serve monitoring enthusiasts, public safety, military, federal, state and local law enforcement agencies, emergency managers, diplomatic services, news-gathering operations and more.

The AR-DV1 is available in a professional (unblocked) or USA consumer version.*

For more information on the AR-DV1, go to www.aorusa.com
The Conclusive Choice

1- Pulling out weak signals during extremely harsh band conditions

Narrow Band SDR + Direct Sampling SDR

A unique Hybrid SDR Configuration utilizing YAESU’s Legendary Powerful RF Front-End and improved local oscillator C/N characteristics combined with a Sharp Crystal Roofing Filter and 18-bit Narrow Band SDR produces unsurpassed critical receiver performance when faced with challenging on-the-air interference situations.

The Narrow Band SDR portion is combined with Direct Sampling SDR output on the LCD display. The operator enjoys an astounding visual awareness of activity across the entire band plus detailed activity focus in the immediate proximity of the selected operating frequency.

In Homage to the Founder of Yaesu – Sako Hasegawa JAIMP

FTdx101MP 200W

The Ultimate

FTdx101D 100W

This device has not been approved by the FCC. This device may not be offered for sale or lease or be sold or leased until approval of the FCC has been obtained. The information shown is preliminary and may be subject to change without notice or obligation.

YAESU USA
8125 Phyfe Drive, Cypress, CA 90630 (714) 827-7800

For the latest Yaesu news, visit us on the Internet: http://www.yaesu.com

Specifications subject to change without notice. Some accessories and/or options may be standard in certain areas. Frequency coverage may differ in some countries. Check with your local Yaesu dealer for specific details.
C4FM/FM 144/430 MHz Dual Band 5W Digital Transceiver
FT-70DR
(700 mW Output and Clear audio, Commercial Grade Specifications)

C4FM/FM 144/430 MHz Dual Band 5 W Digital Transceiver
FT2DR
(Improved 66 ch GPS receiver included)

C4FM/FM 144/430 MHz Dual Band 30 W Digital Transceiver
FTM-100DR
(Improved 66 ch GPS receiver included)

C4FM/FM 144/430 MHz Dual Band 50 W Digital Transceiver
FTM-400XDR
(Improved 66 ch GPS receiver included)

C4FM/FM 144 MHz 65 W Digital Transceiver
FTM-3200DR
(Genuine 65 Watts High Power)

C4FM/FM 430 MHz 55 W Digital Transceiver
FTM-3207DR
(Heavy Duty 55 Watts High Power)

C4FM/FM 144/430 MHz Dual Band Dual Mode Digital Repeater
DR-2X

C4FM/FM 144/430 MHz Dual Band Dual Mode Digital Repeater
FT-991A
(Real-Time Spectrum Scope included)

System Fusion II Supports All C4FM Portables and Mobiles

- Firmware updates will enable System Fusion II compatibility with all existing C4FM products.

For the latest Yaesu news, visit us on the Internet: http://www.yaesu.com

Specifications subject to change without notice. Some accessories and/or options may be standard in certain areas. Frequency coverage may differ in some countries. Check with your Local Yaesu Dealer for specific details.
The Lure of Less

We hams like to get more for less. Just check out the haggling at a hamfest flea market if you have any doubts. Part of it is being frugal (or “cheap” if you prefer), but another part is the challenge of seeing how far you can stretch a buck. At hamfests, this challenge is about dollars, but on the air, it’s the same challenge that drives the QRP, or low power, enthusiast to see how far he or she can stretch a watt. And just as it’s possible to get some amazing deals at a hamfest, you can make some amazing QSOs with QRP. In fact, it may be easier since there are more opportunities. Hamfests happen here and there, scattered around the calendar and the country. The ham bands are available 24 hours a day, 7 days a week, wherever you happen to be. And believe it or not, there are still plenty of great QRP DXing opportunities even now, at the bottom of a sunspot cycle that never really had much of a top.

In my mind, the lure of less for QRP extends beyond just output power. My ham project for New Year’s Day was building a new “Cricket” 30-meter QRP transceiver from the 4 States QRP Group. It met several “lure of less” criteria — less money, less time, and less to connect to it to put it on the air. The kit is downright cheap; it took just one afternoon to build, the board has a built-in hand key and it runs on a self-contained 9-volt battery. There are only two connections: An antenna and headphones. It also doesn’t have a volume control or tuning knob (it’s crystal-controlled), but hey, this is the lure of less personified. I haven’t had time yet to put it on the air and make any contacts (when I tested it after construction, the band was completely dead, confirmed on a second receiver), but I already know what three quarters of a watt can do on 30 meters. That’s 50% more power than I used with a different QRP rig a couple of years ago to make a contact with central Europe. Stay tuned…

Hopefully, I’ve piqued your interest at least a little bit in the lure of less. But if you aren’t convinced, there’s — well — more.

(Continued on page 22)
The W9IOP Second Op

Our November cover story on the W9IOP Second Op DXing aid brought back happy memories for many readers, as well as several letters from them. Here are a few:

Editor, CQ:

The cover of the most recent CQ magazine caught my eye while I was browsing in our library today. I found Terry Joyner’s article, “Blast From the Past: The W9IOP Second Op,” very interesting as I never knew who W9IOP was or that he was an avid contester. I fondly remember the Second Op. I had one at my operating position many years ago and used it frequently.

Mr. Joyner wrote that W9IOP moved to Electro-Voice after working at CQ magazine in its early days. He mentions the names of a couple of hams at E-V and I would like to name another and tell a little about the division he headed.

He was Russell M. Planck, W9RGH. At the time I knew Russ, he was a vice president at E-V and manager of RME (Radio Manufacturing Engineers), an E-V division at the time. Russ and Eric G. Schalkhauser, W9CI, founded RME in the 1930s to manufacture receivers and other equipment for the ham market. Some of their best-known receiver models were the RME 69, 45 and 4350 (many of which are still on the used market today on eBay and other places – ed.). I believe that Eric retired after he and Russ sold the business to Electro-Voice after World War II. About 1954, the RME plant moved into a former auto dealership two blocks from my home in Washington, Illinois. The plant manufactured the RME 4300 and 4350 receivers, a matching VHF converter (the model number escapes me), and E-V Power Point phono cartridges. You know where this young ham (K9AXG at the time) spent a lot of his time.

Russ was my Boy Scout Explorer advisor. In addition, he and his assistant, John Overly, became my mentors. Their help and encouragement aimed me into a career in electronics, first as an electronic technician and later in electronic and computer engineering.

Your readers may be interested in another item. The November 1952 CQ was the Special Novice issue. The cover article was “Putting the 6146 on Two Meters,” by Robert V. Morris, WN2IHM. Four or five years after the article was published, my father and I built that transmitter. I was a junior in high school at the time. We were not successful in getting it to work at the time and the project was set aside for other, more pressing, projects like term papers and finals.

Some years later, after I had graduated from Hofstra University’s engineering school, my father brought the transmitter and the CQ magazine to my home on Long Island. I realized my error after rereading the article and we soon had it lighting a fifteen-watt light bulb to about half brilliance. The transmitter has never made a contact.

I shall be happy to bring this transmitter to your office and show it to you. I am only about an hour from Hicksville.

73,
Steven E. Perry, W2HAF
Rocky Point, New York
sperry@optonline.net

W2VU Replies:

What great memories, Steve! We’ll be in touch about getting together with you and your radio!

Editor, CQ:

Loved the piece on Electro-Voice and W9IOP. Do you remember that you carried an interview with (E-V co-founder) Al Kahn, K4FW, more than 17 years ago?

73,
Ted Cohen, N4XX

W2VU replies:

Thanks, Ted, and yes, I remember that interview well (December 2001 CQ, p. 16). I also remember that you conducted the interview and wrote the article! Lots of connections here!

The following letters were directed to author Terry Joyner, W4YBV:

Terry:

Thank you for resurrecting the memory of the W9IOP Second Op (in November CQ). I wore mine out; don’t know where it went. Maybe it disintegrated.

Larry was a premier op of that time. He dominated CW Sweepstakes from whichever call area he operated. I don’t remember him as a DXpedition guy. However, I recall the time when he operated from the Vatican. There was no “up 5.” It was pound away right on his frequency until you got through. As a friend of mine observed, “chasing him was like operating Sweepstakes.”

Thanks, again. Happy New Year,
Kurt Meyers, W8IQ, (ex-W8IBX)
Toledo, Ohio

Hi Terry,

Until a couple years ago I had the Second Op on my radio shelf. The last time I looked at it, I noted that much of the info was so far out-of-date that it was no longer of value to me and threw it away. I also have a similarly-sized round slide rule that I have retained. It is too sentimental to me to discard.

Thanks for the memories, Terry.

73 and Happy New Year,
Jack Friend, AK7O
South Salt Lake, Utah
As this is written in early January, the federal government is partially shut down due to a funding dispute between the President and Congress. The FCC is among the agencies affected. We hope that, by the time you read this, an agreement has been reached to reopen all federal agencies. However, the impact on hams will likely extend beyond the shutdown. Here's a snapshot of how the shutdown affected government agencies and services typically used by hams, including any expected post-shutdown effects.

FCC
The FCC shut down all but essential functions (such as spectrum auctions) as of January 3. The Universal Licensing System (ULS) and Electronic Comment Filing System (ECFS) websites continued to be accessible; however, there was no staff support behind them. Amateur license processing was shut down, including new licenses, upgrades, vanity call requests, renewals, and administrative changes (such as a change of address). There will be a backlog in all of these functions once the government reopens, so hams filing license-related applications can expect processing delays. If similar situations in the past are used for guidance, licenses due to expire during the shutdown period will remain valid as long as a renewal application has been filed in a timely manner. All other applications will be processed in the order received once the staff is back at work. Deadlines on comments or reply comments on open rulemaking proceedings will likely be extended by the number of days during which the FCC was shut down (although we are not aware of any amateur-related proceedings currently in comment or reply-comment periods).

NOAA/Space Weather Prediction Center
The Department of Commerce was also affected by the shutdown. Its many agencies include the National Oceanic and Atmospheric Administration (NOAA), the umbrella agency for the National Weather Service and the Space Weather Prediction Center (SWPC). The National Weather Service and its Storm Prediction Center remained operational because they are essential to protection of life and property (even though workers were not being paid during the shutdown). The SWPC web page also said it was remaining open, but as you can see from Figure 1, the “Space Weather Conditions” segment posted on the FCC’s Universal Licensing System (ULS) web page:

Lapse in Government Funding
Effective: January 3, 2019 2:00 p.m.
System: Universal Licensing System (ULS)
Due to a lapse in funding, the operations of the Federal Communications Commission will be limited with no system support. We regret any inconvenience.

Figure 1. The Space Weather Prediction Center’s web page says it will be updated during the federal government shutdown, but the “Space Weather Conditions” box at the bottom of the image suggests otherwise. (From SWPC website)

Figure 2. Some space weather data remained available, such as this graph of the K index, current when the screen shot was taken. (SWPC, via sunspotwatch.com)
The page contained no data. Other data was available, such as the K index graph in Figure 2.

NIST/WWV

The National Institute of Standards and Technology (NIST) is also part of the Commerce Department and was similarly affected by the shutdown. Radio stations WWV and WWVH remained on the air, but the WWV’s web page (Figure 3) had no current information available. (Sidenote: To the best of our knowledge, the future status of WWV, WWVB, and WWVH remains uncertain. The Commerce Department eliminated their funding in its latest budget request, but as far as we know, Congress has not taken final action on the department’s budget.)

NASA

All NASA operations were shut down except for those necessary to maintain safety aboard the International Space Station (Figure 4). It is unclear at this point how amateur satellites scheduled for launch aboard NASA rockets will be affected. If a launch is part of an ISS resupply mission, it will presumably move ahead on schedule. Other launches may be delayed as a result of the shutdown. Check the status pages for individual satellites for updates.

Figure 3. The WWV web page was not being updated during the shutdown; however, WWV itself continued broadcasting. (NIST website)

Figure 4. This notice on NASA’s homepage said it all … only operations critical to maintaining crew safety and experiments aboard the International Space Station remained open. The rest of NASA was closed for the duration.
Every amateur should have a bucket list. Mine includes traveling to a far-flung destination and being DX as part of a DXpedition; visiting ARRL headquarters and operating from W1AW; operating from a cruise ship as /MM (maritime mobile) from a faraway location; earning DXCC, 5-band DXCC, WAS, and Honor Roll. The list continues to grow. Having goals and achieving them over a number of years as an active ham has been good for me and good for the hobby.

I visited ARRL headquarters way back in 1990 and operated two days at W1AW, check. DXCC, check; WAS, check; maritime mobile, check. Visit the birthplace of radio? Check! I’m still looking to join a DXpedition.

So how did I come to visit the birthplace of wireless? Why Italy for a vacation? Why take a radio with me?

The Chance to Be DX
I always take a radio with me on vacations for a chance to be DX. I began with...
the Elecraft K2 on Maui in Hawaii. I brought an Elecraft K1 to Canada and on subsequent trips, a KX1 maritime mobile (and for shore visits in Canada). I returned to Hawaii on the island of Kauai with the new KX3. For my trips to Ireland and Portugal, I also took the KX32.

I planned to explore Italy with my new KX2. I made sure to find B&Bs and small hotels that would allow me to set up and operate from the room or a nearby park. I used room descriptions and photos as well as Google Earth to find suitable locations from which to operate from my room. Balconies and patios were a plus. My wife and I would be spending 20 days touring Italy from Rome to Modena and Venice plus the Cinque Terre and, in Bologna, the Marconi Museum (Photo A).

Operating from Italy is easy as you do not need a special license to operate. It is on the CEPT country list. ARRL has a list of countries with license requirements. Just bring a copy of your license and a print out of T/R 61-01. I would be I/NK6A.

I packed my suitcase with 25 feet of coax, my Ventenna HFp vertical plus a long wire with counterpoise. My carry-on contained the KX2, paddles, and spare battery. I had no issues traveling between Los Angeles, London and
Italy. I only had to remove all items from my carry-on while in London.

Seven Cities in 20 Days

I operate for a short time on each day of our vacations. Vacation comes first! Our first stop was Rome. We picked a small hotel close to all the well-known sites with the important bonus of a rooftop where I could operate. Sadly, the roof also contained a bar and spa, which were very crowded during my time for operating, so no operation from Rome.
Our next stop was Florence (Photo B). Once again, we’d picked a small B&B outside the busy center of the city. Our room had a balcony and patio. I was excited to try my first operation from Italy. Setting up my antenna outside, I discovered that what I had read about Florence was very true … mosquitoes! I tried operating outside and was bitten and chased inside. I set up the antenna on a railing closer to our room (Photo C). The location was not ideal and I made but one QSO to Spain. The radio would have to take a back seat to museum visits and being a tourist for a few days. I was happy with one Q. My operating schedule was usually in the late afternoon after visiting historical sites, usually between 1300 and 1500 UTC.

We rented a car and drove to Tuscany (Photo D), and our first stop was the Il Rondo Boutique Hotel in Montepulciano. This small 18th-century boutique hotel had a very nice outdoor area, perfect for setting up and operating. I had the entire garden to myself and set up for an hour of operating (Photo E). Conditions were excellent. I did tell the office staff that I would be operating and managed to make 5 Qs during our short stay, one on 14 MHz and all the rest on 10 MHz.

Running low power adds a bit of skill to making a contact. Calling CQ should be done on known QRP frequencies (14.060, for instance). I noticed on other frequencies that many European stations were calling CQ and adding QRP to their calls. I had no problems making contacts on 30 meters calling CQ. My power was usually 5-8 watts out. I made a total of seven contacts, including stations in Greece, Germany, Slovenia, a portable station in Scotland plus two Summits on The Air (SOTA) stations. Running QRP power, I usually look for other like-minded folks, and SOTA activators usually run low power. I am active in SOTA so I always look at the SOTA watch alert page on my phone. I was also checking DX Summit plus looking at the Reverse Beacon Network.

Running low power adds a bit of skill to making a contact. Calling CQ should be done on known QRP frequencies (14.060, for instance). I noticed on other frequencies that many European stations were calling CQ and adding QRP to their calls. I had no problems making contacts on 30 meters calling CQ. My power was usually 5-8 watts out. I made a total of seven contacts, including stations in Greece, Germany, Slovenia, a portable station in Scotland plus two Summits on The Air (SOTA) stations. Running QRP power, I usually look for other like-minded folks, and SOTA activators usually run low power. I am active in SOTA so I always look at the SOTA watch alert page on my phone. I was also checking DX Summit plus looking at the Reverse Beacon Network.

Running low power adds a bit of skill to making a contact. Calling CQ should be done on known QRP frequencies (14.060, for instance). I noticed on other frequencies that many European stations were calling CQ and adding QRP to their calls. I had no problems making contacts on 30 meters calling CQ. My power was usually 5-8 watts out. I made a total of seven contacts, including stations in Greece, Germany, Slovenia, a portable station in Scotland plus two Summits on The Air (SOTA) stations. Running QRP power, I usually look for other like-minded folks, and SOTA activators usually run low power. I am active in SOTA so I always look at the SOTA watch alert page on my phone. I was also checking DX Summit plus looking at the Reverse Beacon Network.
Our next stop was a small village near Lucca called Sant’Andrea di Cómpito. This small three-room B&B, (Il Rifugio) is run by two guys originally from Hawaii (Photo F). They couldn’t have been nicer and more accommodating. One of the owners provided me with mosquito repellent. Yes, they also had a swarm of mosquitoes.

I set up my vertical and my long wire outside on the lawn (Photo G). Conditions were excellent. There was no noise and I heard a lot of signals. I monitored the DX Summit and also checked the SOTA watch page. I made two contacts with activators on a summit, YO/HB9DST and OK2BWB. I managed to operate two of our three days here, and one...
Traveling to Italy for a vacation was a no-brainer. I am into cooking and all things Italian, including cars. I was attending a radio club meeting and a visitor from Italy was sitting next to me. Fabio, IZ4AFW, and I began to talk and discovered that we both had a mutual ham friend in Brazil, PY2NY. Fabio is from Bologna, and when I told him I would be visiting Italy the following summer, he invited me to visit the Marconi Museum there. My wife and I made plans and arranged for our tour once we arrived in Bologna from Modena.

I had the good fortune to visit the house and grounds where the very first transmission of a wireless signal was successfully sent in 1895. The Marconi Museum is housed in Villa Griffone, once the residence of the Marconi family and where a young Guglielmo Marconi experimented with wireless (Photo P). Standing on the grounds and looking toward the hill where the signal was received (Photo Q) was a humbling experience. Learning about Marconi’s study of Herztian waves, Maxwell, and other well-known names reminded me of how I studied for my radio exams. I was familiar with all those names.

We met Fabio at the museum, where Adriano, I4YCE, conducted the tour (Photo R)
The Marconi museum houses many exhibits and very accurate reconstructions of experiments that were carried out in 1895. Working models of early coherer receivers and spark gap transmitters were on display (Photo S). The coherer was the first detector (invented in 1890). The reception of Morse code via radio waves was performed by the coherer detector. Early transmitters were spark gaps using a Ruhmkorff coil and Branly coherer for the detector.

The Marconi magnetic detector (Photo T) became the official detector used by the Marconi Company from 1902 through 1912.

The first transmission of a wireless signal took place on a hill 1.5 miles from the Villa.

Like most significant inventions, radio had not just one “father”, but many. Maxwell, Hertz, Lodge, Branly, and Tesla were but a few of those contributing to early wireless.
The museum grounds are also home to the IY4FGM radio club (Photo U), which is housed in the old Villa family chapel (Photo V). The G. Marconi Memorial Station is managed by the Club Associazione Radioamatori Italiani in Bologna. I was invited to operate for the limited time we had before catching our train to Venice. I made two quick contacts (Photo W) and had to leave.

The Marconi Museum will be one of the host locations for the next World Radiosport Team Championship, WRTC 2022.

Photo S. Reproduction of first spark gap transmitter used by Marconi in 1895.

Photo T. Magnetic detector, which took the place of the coherer receiver.

Photo U. Amateur station IY4FGM is part of the Marconi Museum. The inventor said he always considered himself to be an amateur.

Photo V. The Marconi Memorial Station, IY4FGM, is located in a chapel on the museum grounds.

Photo W. The author operating IY4FGM. (Photo by Fabio, IZ4AFW)
afternoon I was visited by the neighbor kids and our B&B host. I decided to have them listen to SSB so they could hear what was being said. Tuning around 20 meters, I found a station in Greece operating a contest. I didn’t bring a mic with me, but with the KX2 I could use the built-in mic and called. I worked SV5FBG on SSB with only 3 watts. It was time to recharge the battery. I worked Germany, Russia, Belgium, the Netherlands, Spain, Croatia, Austria, Denmark, and a special event station from Bulgaria, LZ251MKP. My totals from two days of casual operating were 15.

The next stop on our tour was the town of Levanto at the top of the Cinque Terre (Photo H). I found a hotel online with car parking, and our room had a private patio ... with no mosquitoes. A fantastic operating position (Photo I). I set up my antenna using a clamp to a metal gate, ran the radials out to the patio and began to listen. I answered a CQ on 10.108 MHz and made contact with 4O7TC in Montenegro. I also worked the Czech Republic, George, RU3ZL, and a station in Finland. I didn’t make many contacts this time, but it was a fantastic location to visit.

After three days of eating wonderful seafood and walking about, we drove to Modena. My purpose here was not so much to operate my radio but to visit the Ferrari museums and eat wonderful food. We found a very old B&B dating back to the 19th century in the old town called Salotto delle Arti. Unfortunately, it was up three flights of stairs with no balcony or access to the outside. But this B&B did not disappoint. I was getting a bit itchy for my one Q and decided to just try listening by setting up my antenna inside by the open window (Photo J). The room had a very high ceiling. I tried 20 meters and called CQ on 14.055. I got a call from Jim, SV8ANW, in Greece. My RST was 569. Not bad for inside, running 5 watts. We actually had a nice QSO. He was running 100 watts. I later checked the Reverse Beacon Network (Photo K) and saw I was heard in Pennsylvania by WZ7I. That is why I love QRP.

Traveling Light
QRP is traveling light, using small portable radios that you can take anywhere. You do not need a large antenna. You do not need to even bring a power supply. All are battery-operated. Low power and low current do not mean you cannot get out. It is very satisfying to make contacts when away from your shack and in a foreign country (Photo O).

Notes:
1. Ed. note: Radio has many “fathers,” from Mahlon Loomis to Alexander Popov and Nikola Tesla. Fans of each will debate endlessly who actually “invented” radio. But there is little question that Guglielmo Marconi was the first to realize the world-changing potential of radio communication and who created the wireless industry that underlies so much of today’s communication technology.
2. See Don’s previous article about this trip, “Sardines, Wine, Whiskey, Cows and a Radio (QRP DXpedition to Portugal and Ireland),” Feb. 2016 CQ, p. 14
3. European Conference of Postal and Telecommunications Administrations (CEPT) radio amateur license –US Extra and Advanced class licensees wishing to operate while in Europe are eligible to do so if the country they are visiting participates. Always carry a copy of your amateur license and a copy of form T/R 61-01.
4. <http://sotawatch.org> - SOTA is an award scheme for radio amateurs that encourages portable operation in mountainous areas. Participation is possible for all radio amateurs and shortwave listeners. There are awards for chaser and activators.
5. <www.reversebeacon.net> - The Reverse Beacon Network, or RBN, is a network of stations listening to the bands and reporting what they hear, when, and how well.
As a licensed amateur radio operator since 1965 (originally WN3EIQ), I’ve been at it for a long time. I’ve enjoyed many aspects of the hobby that seems to keep on giving. I’ve built a wide range of transmitters, receivers, and transceivers like the two-tube, two-band “Scrounger” featured in the September 1964 issue of *Electronics Illustrated*, and such kits as the Heathkit HW-7 and the A & A Engineering 20-meter transceiver. Some are still in boxes waiting for the time to build them. I also have an Elecraft KX3 in my stable, but I find a certain lure and mystique in operating small, homebrewed, non-commercial radios.

SDR for QRP

I think the most interesting QRP experiences I’ve had lately have been in building and operating SDR radios. I first encountered software-defined radio (SDR) technology as an owner of various Flex Radios including the 1500, their QRP model. With the rig’s panadapter or bandscope, I felt like someone had finally given me X-ray vision and I could now use my eyes and ears. SDR radios changed my world and operating habits so much that I’ve found it hard to go back to analog-style radios where I can’t see signals as well as hear them. During these times when we often experience miserable propagation, QRP operation has become even more challenging and I’ve found that having eyes on the radio spectrum can help immeasurably. Despite these poor conditions I’ve continued to pursue SDR QRP operation using various radios, all in an effort to improve my operator skills while maintaining as small and portable a station as possible.

My first QRP SDR kit was designed and marketed by Tony Parks and built around the Si570 programmable oscillator and ATTINY85 controller (now sold by KB9YIG). Richard Robson, Sr., WB5RVZ, has gone to great lengths to document the building process along with testing and troubleshooting Softrock kits. It is not the purpose of this article to go into a technical explanation of SDR technology, but rather to discuss how I use it to my advantage in QRP operation.

Assembly of Tony’s Softrock kit was also my first building experience working with surface mount devices (SMD) so it was a challenge. His receiver and transceiver kits became popular enough to encourage the birth of his company — Dash Five, Inc1. I built the Softrock Ensemble RXTX for the 40-, 30-, and 20-meter bands (Photo A). The output was only about 1 watt and it required external sound cards and a computer to work. I used various software including HDSDR and PowerSDR (all free). It did not work particularly well for CW because of latency issues and QSK (break-in) operation was not possible. There were workarounds for casual CW QSOs, but in a contest or sprint situation where a quick TXRX turn-around cycle is essential, I found CW operation to be frustrating with this radio. I added a Mini-Boots II amplifier which, of course, helped on the power side, but there were too many hardware requirements and cables external to the rig itself, making simple, portable, QRP SDR operation a bit inconvenient.

While the Softrock Ensemble wasn’t the ultimate radio for my needs, it did...
further open my eyes, so to speak, to the world of SDR technology and its benefits in QRP operation. The panadapter, much like the waterfall available in digital modes, provides a clear view of much of the band. With SDR radios’ typically low-noise receivers, visual filters, DSP and other software enhancements, the QRP operating experience has become nearly as good as that offered by high-end base receivers.

I continued to look for other inexpensive options that might simplify operation and I found the Peaberry, which was a partial kit and — compared with the Softrock kits — had the advantage of an on-board sound card that cut down on necessary outboard gear. I didn’t get in line quickly enough, though, and lost out on the opportunity to purchase a Peaberry before permission was given to Ron Patton, W4MMP, to produce the rig commercially. Ron assembled a capable team that worked on further developing the Peaberry’s technology. They arrived at the Omnia Proficio, now renamed the Multus Proficio after a copyright issue surfaced.

I am one of the early adopters of this 10-band plus general coverage, 5-watt transceiver (Photo B), and I set out to build a small QRP SDR station around this radio. In my opinion, it is the best buy in QRP SDR transceivers and all it takes is a single USB cable to a Windows 10® computer! (Photo C) The kit requires minimal skills as all the SMD components are pre-soldered to the board. This transceiver now uses the Kenwood CAT protocol, provides accessory ports for an outboard auto-tuner (I use the Elecraft T-1 when needed) and an external amplifier PTT control. I’ve found it works great with the Hardrock50.

Initially, the Proficio was dependent on using freely distrib-

Photo B. Multus Proficio station including Elecraft T1 autotuner and the Hardrock50 amplifier (for those times when QRP won’t cut it).

Photo C. The complete Multus Proficio station. All that’s needed is a single cable between the rig and a Windows 10® laptop or tablet.
right in this issue, our annual QRP Special! We’ve got other hams’ stories of QRP success, a review of a portable mast for QRP operating in the outdoors, and several projects of interest to the QRPer (but not limited to low-power enthusiasts).

QRP Editor Scott Rought, KA8SMA, offers his “Top Ten List” of reasons for operating QRP, and he reviews the SOTAbeams “Tactical 7000hds” collapsible antenna mast that can be tucked into a backpack. NK6A shares the fun he had operating QRP on a trip to Italy; NJ3K tells us how he worked 100 countries not only with low power, but also while mobile and operating only CW; and K9GH shares his memories of operating QRP maritime mobile on a cruise with his son’s scout troop. Plus, our cover story is about the hunt for extreme QRP — the results of the 2018 CQ World Wide Foxhunting Weekend.

On the technical side of things, W2JAZ shows us how to operate QRP with a software defined radio and Windows® tablet in “Traveling Light;” K2AOP shares his circuit for a low current and ultra-high resistance meter; WØPCE describes how to build an amplified absorption wavemeter, and N4KYW tackles the challenge of building enclosures for QRP gear … with a trip to the kitchen accessories aisle in the supermarket.

If we still haven’t persuaded you to turn down the power level on your rig, we also have PA3EWP’s tale of making a DXpedition to the Kingdom of Tonga and operating as A35EU; Emergency Communications Editor W4ALT looks at EmComm and accessibility for hams with physical limitations; DX Editor N2OO reviews ClubLog’s “most wanted” entity list and examines why certain places are so hard to contact, and Contesting Editor K3ZJ introduces us to the growing use of realtime contest scoreboards on the World Wide Web that show how various competitors are doing while a contest is under way.

Finally, we introduce a new column this month — “Analog Adventures” by Eric Nichols, KL7AJ. While more and more radio communications is “going digital,” Eric is here to remind us that radio itself is analog and to offer tips, techniques, and projects to keep your analog radio skills as sharp as your digital ones. “Analog Adventures” debuts on page 74.

Housekeeping note: As this issue goes to press, we are still looking for possible successors to K1BV in both of his long-worn hats as Awards Editor and USA-CA Awards Manager. If you or someone you know is interested in either one or both of these positions, please drop me a note and we can talk. — 73, Rich, W2VU
which still works well, was an 8-inch WinBook available from Microcenter and runs Windows 10 quite well. I eventually found, though, that I needed a bit more screen real estate to simultaneously have the MSCC-Core application running with the panadapter window as well as logging software or digital communications programs such as fldigi3.

I also learned something about the way USB communications works. Since the WinBook does not have a keyboard or built-in mousepad, if I didn’t want to use my big fingers on the rather small touchscreen to execute commands, I would need to hang a USB hub from the single USB port provided by the tablet in order to use a wireless mouse and/or keyboard. I found that the hub slowed things down noticeably. But the USB hub did provide a means of attaching an external soundcard and a mouse/keyboard combo (Photo E). Had I used a powered (active) hub rather than the unpowered (passive) one I had available, things might have worked better without noticeable lags.

With a straight key (I use a small Pico Keyer), Carolina Windom, and an early version of MSCC-Core software, I placed in the top three in an NAQCC Sprint in the W2 Division. Not a bad showing, and the only thing that held me back from making a few more Qs was the latency in CW operation and poor band conditions.

Since this experience, the radio’s operating software has been greatly improved and new developments in filtering, noise reduction systems, and so forth are being rapidly introduced by the developers. TX/RX turnover is handled by a relay, so lightning-fast QSK operation will not likely ever be possible, but the turnover is now quite acceptable and delay time can now be adjusted.

I also installed two virtual programs to handle audio (Virtual Audio Cable4) and serial communications (Virtual Serial Port Manager5). These apps allow one to create more virtual serial ports to control such applications as WSJT-X, fldigi, or a logging program. The free “ComOCom” app6 also works fine for this latter purpose.

Recently I improved the computer situation further, returning to eBay where I purchased a very slightly used NetBook tablet with a touch screen, detachable keyboard with built-in mousepad, single audio and USB ports, and a storage expansion SD card slot. And best of all, the NetBook provides slightly more screen real estate at 10.1 inches. It boasts a quad-core processor and doesn’t seem to get too bogged down by the added USB hub, though I’ve not yet tried running many applications at once.

Beyond Proficio

Other SDR receivers that offer a panadapter provided by various software applications such as HDSDR, SDR#, SDR Play, and others, can enable the operator to quickly see where the signals are in a passband. These are inexpensive USB “dongle” receivers that boast very broad frequency coverage. There is a great deal of information on the internet and in various publications about such setups, many of which can tune up to 1.2 GHz or even higher. These SDR receiver dongles sell for as little as $20 on the low end to just over $200 for a high-end model of SDR Play or the FunCube Dongle Pro+ (Photo F). Coupled with a companion transmitter, T/R switch, and small tablet or laptop, an exceptionally high-quality QRP station can be assembled at a low cost and provide eyes on the band through the SDR advantage for QRP operations.

Notes:
1. <http://fivedash.com>
2. <www.multus-sdr.com>
3. <https://tinyurl.com/ybmgvs7u>
4, 5. Available from various online sources
7. <www.funcubedongle.com/?p=155>
Over a few beers during the hamfest in Friedrichshafen last year, several of us were talking about our next DX destination. Personally, I don’t like to go to the same country twice. We mentioned a few possibilities in the Pacific. Some were out of our scope because of the cost and/or the difficulty of getting there. Frank, DL4KQ, mentioned Myanmar and everybody thought that was a great idea. From July through mid-September, we worked on this destination. Frank did most of the work because he had some contacts in Myanmar. He even flew there to make some arrangements with the local government. Everything seemed fine, but after a month back home, we still hadn’t received the official papers. We wanted to go to Myanmar in October, so there were only a few weeks left to organize this trip. We started to look for a backup plan.

Another possible destination we talked about in Friedrichshafen was Tonga, in the South Pacific. This is an easy place to activate. A lot of tourists go there, there are daily flights, and getting a license is also no problem. Tonga is not so high on the most wanted list, but still interesting, especially for Europe. Within two weeks, nearly everything (license, location, and flights) was organized. So, we were ready for the following step. By the end of September, we decided to postpone Myanmar and focus on Tonga.

Only three operators from our group wanted to go to Tonga: Tom, GM4FDM; Martin, PA4WM; and your author, PA3EWP. We needed a fourth operator, and the opening was quickly filled by Pat, EI5IX. The team was ready to go for a new adventure (Photo A).

The Kingdom of Tonga
Tonga is a Polynesian country and archipelago comprising 169 islands, of which 36 are inhabited. It is the only kingdom
in the South Pacific. The total surface area is about 750 square kilometers (290 square miles) scattered over 700,000 square kilometers of the southern Pacific Ocean. The sovereign state has a population of approximately 100,000 people, of whom 70% reside on the main island of Tongatapu. The Tongan people first encountered Europeans in 1616 when the Dutch vessel Eendracht, captained by Willem Schouten, made a short trading visit. Other Dutch explorers came later, including Jacob Le Maire (who called on the northern island of Niuatoputapu); and in 1643 Abel Tasman (who visited Tongatapu and Ha’apai). Later noteworthy European visitors included James Cook (British Royal Navy) in 1773 and 1777. Tonga became a British protectorate in 1900 and regained full independence in 1970, but is still a part of the UK’s Commonwealth of Nations.

Location on the Island
We found a nice location on the western part of the main island (Photo B). The beach resort Heilala at Kanokupolu is located at the Ha’atafu beach. Because we were there during the low season, we got carte blanche to setup our antennas; we had only to take care of not to disturb the few other guests. A previous Scottish DXpedition had also used this QTH, and they gave us a lot of useful information. It was possible to set up the antennas at the edge of the beach. The beach itself was impossible because it was also used by other visitors.

The Biggest Challenge
Our biggest challenge would be the low sunspots. Working Europe from the South Pacific at nearly the bottom of the sunspot cycle would not be easy. Looking at the propagation prediction programs, it appeared that it would be possible to work western Europe only on 20, 30, and 40 meters. But with weak signals. So, the challenge became even bigger. We knew that every additional dB of gain would be very helpful. We decided to make vertical dipole arrays (VDAs)
for 17, 20, and 30 meters. Martin — with help from Jan, PA4JJ, and Henk, PA3GCV — built the VDAs and the other wire antennas (Photo C). They did a great job.

Travel to Tonga

It would be a long journey to our destination. The team meeting point would be Doha in Qatar. Tom flew from Edinburgh, Pat from London, and Martin and I from Amsterdam. We left Tuesday 23 November for a 6-hour flight to Doha. Pat joined us one hour after we arrived. We received a message that Tom had a problem. His plane was broken and could not leave Scotland. This would be a challenge to catch his connecting flights. When we boarded our plane to Auckland, New Zealand, we received a message that his delay was five hours and maybe we would meet him in Auckland. For the next 17 hours, it would be quiet without any info from Tom. This is the second longest flight at this moment, and we can say that is long! We arrived in Auckland and heard that Tom would leave Doha in a few hours, so he would arrive only one day later at Tonga. We had 11 hours of layover time in Auckland before our next flight. We put our luggage in a storage room and went by taxi to the city, had a nice short walk and visited the sky-tower to see Auckland from a height of 220 meters (722 feet). After lunch, we went back to the airport for our last part of the trip. The flight from Auckland was only 2-1/2 hours. We arrived at the Tonga airport around 19:30 local time. After collecting our luggage and a nearly 1-hour drive, we arrived at 21:30 at the Heilala resort.

Antenna Setup

Early the next morning, we started assembling our antennas. We decided to focus on 17, 20, 30, and 40 meters for the first day. We soon noticed that we would have a challenge with the coaxial cables. We brought approximately 500 meters (1,650 feet) of coax with us. From the shack to the beach was roughly 100 meters (330 feet). Around noon, I had to quit to meet Tom at the airport. He arrived around 13:00. From the airport, we went to the telecommunication office to collect our license (Photo D). We had already been in contact a few times with Officer of Telecommunication by email and phone about the license. He had added the possibility of operating on the 60-meter band, and we were very pleased with this addition. For many, or maybe everyone, Tonga would be a new DXCC entity on 60 meters. After leaving the office, we went shopping and back to the resort. Martin and Pat were ready with the 17- and 20-meter VDA; only the 30-meter VDA still had to be erected. We needed four men to
finish this job. The 40-meter vertical was also ready to use.
The next day we would finish the other antennas, a 10/12/15-meter multiband vertical, an 80-meter vertical and a double half delta loop (DHDL) antenna for receive. We were waiting for a local guy who would climb into a 17-meter high palm tree to place a rope on top of it for the 160-meter vertical. After two days, we decided not to wait any longer and started to throw a rope over a palm tree and do the job ourselves. We chose a palm tree approximately 12 meters high for 160 and another palm tree for 60 meters. A few hours later, both antennas were ready for use. The antenna farm was completed (Photo E). Luckily there were not many other guests, so we could use all the space we needed for our antennas.

Equipment
We had three complete stations operational (Photo F), plus one spare radio. Some hours of the day, we operated all three stations simultaneously (see Tables 1 and 2 for the makeup of each station).

We used bandpass filters between each radio and its associated amplifier. Logging was done with WINtest and WSJT-X. The computers were wirelessly networked. We used the Microkeyer MK2 as the interface between the radio and computer. There was a good internet connection, so we uploaded our log to Clublog every day.

Operating and Propagation
While all of our operators are mixed mode operators, everyone had his preferred mode. We focused on the main modes of CW, SSB, and RTTY (Photos G, H and I). Due to bad propagation, though, most of our QSOs ended up being on CW or FT8. There was a high demand for this mode. Searching the bands, sometimes the only activity we could find was on the FT8 frequencies (we hope this will change quickly). During the morning hours, there was not much propagation at all, so we did some sightseeing and other necessary things like shopping (Photo J). When we did get on the air in the

Radio Setup:

<table>
<thead>
<tr>
<th>Radio</th>
<th>Amplifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elecraft K3</td>
<td>Expert 1.3</td>
</tr>
<tr>
<td>Elecraft K3</td>
<td>THP 1.1</td>
</tr>
<tr>
<td>SUNSDR</td>
<td>Homemade 600 watt</td>
</tr>
</tbody>
</table>

Antennas:

<table>
<thead>
<tr>
<th>Band</th>
<th>Antenna</th>
</tr>
</thead>
<tbody>
<tr>
<td>160m</td>
<td>Inverted Vee</td>
</tr>
<tr>
<td>80m</td>
<td>Vertical + 1 elevated radial on 18m Spiderbeam pole</td>
</tr>
<tr>
<td>60m</td>
<td>Inverted Vee</td>
</tr>
<tr>
<td>40m</td>
<td>Vertical + 1 elevated radial on 11-meter fiber pole</td>
</tr>
<tr>
<td>30m</td>
<td>VDA on 18m Spiderbeam pole 20m VDA on 12 meter fiber pole</td>
</tr>
<tr>
<td>17m</td>
<td>VDA on 12 meter fiber pole</td>
</tr>
<tr>
<td>10-15m</td>
<td>Multiband vertical + 1 elevated radial per band on 11-meter fiber pole</td>
</tr>
</tbody>
</table>

The KPA1500 was designed with the serious operator in mind. Its no-nonsense front panel shows all important parameters at a glance, with a high-contrast 32-character LCD and fast, bright LED bar graphs. Band switching is instantaneous, via control inputs or RF sensing. Protection and monitoring circuitry is extensive and foolproof, letting you focus on the job at hand—breaking pileups and overcoming the most difficult operating conditions. And it wouldn’t be an Elecraft amp without robust PIN-diode T/R switching. Like our KPA500, the KPA1500 offers fast QSK without a noisy relay.

The amplifier’s rugged internal ATU can handle full power with load SWR up to 3:1, while a wider matching range is allowed at lower power, including up to 10:1 in standby mode.

KPA1500 Features

- 160-6 meters
- Very compact design - 4.5x13.5x11.5” HWD
- Fast, silent PIN diode T/R switching
- Built-in Antenna Tuner with dual antenna jacks
- Compatible with nearly any transceiver

For complete features and specifications, go to elecraft.com | sales@elecraft.com | 831-763-4211
ANNOUNCEMENTS (from page 2)

ORANGE, TEXAS — The Orange Amateur Radio Club, Jefferson County Amateur Radio Club, and Beaumont Amateur Radio Club will hold the Orange Hamfest 2019 from 7:30 a.m. to 2 p.m., Saturday, February 23 at the Orange County Convention & Expo Center, 11475 FM 1442. Contact: Rocky Wilson, (409) 988-8906. Email: <n5mix@gmail.com>, Alternate Contact: Chuck Vincent, (409) 540-0477. Email: <btmox@att.net>. Website: <www.gsl.net/w52n> VE exams.

SOUTH BURLINGTON, VERMONT — The Radio Amateurs of Northern Vermont will hold HAM-CON from 8 a.m. to 2 p.m., Saturday, February 23 at the Holiday Inn Convention Center, 1068 Williston Road. Phone (802) 879-6589 (afternoon and evenings only). Email: <vtac@vtac.org>. Website: <www.rav.org>. Talk-in 145.15-. VE exams, commercial FCC exams, DXCC / WAS / VUCC card checking, special event station W1V.

SOUTH PARK TOWNSHIP, PENNSYLVANIA — The Wireless Association of South Hills Amateur Radio Club will hold WASHfest 2019 from 8 a.m. to 3 p.m., Sunday, February 24 at the Home Economics Building, South Park, 3735 Buffalo Drive. Contact: Carol Danko, KB3GMN, (412) 884-1466. Email: <n3sf@comcast.net> or <washarc@yahoo.com>. Website: <www.n3sh.org>. Talk-in 146.955- or 443.650+ (PL 131.8).

MARCH

CAVE CITY, KENTUCKY — The Mammoth Cave Amateur Radio Club will hold the 43rd Annual Cave City Hamfest beginning 7:30 a.m., Saturday, March 2 at the Cave City Convention Center, 502 Mammoth Cave Street. Contact: Larry Brummett, KN4IV, 108 Withers Street, Glasgow, KY 42141. Phone: (270) 651-2363. Email: <lbrumett@glasgow-ky.com>. Talk-in 146.34+. VE exams.

ELRYS, OHIO — The Northern Ohio Amateur Radio Society will hold the NOARS Winter Hamfest from 8 a.m. to noon, Sunday, March 3 at the Lorain County Community College-John A. Spitzer Conference Center, 1005 N. Abbe Road. Contact: Carl Rimmer, W8KRF, (216) 256-9624 (before 9 p.m.). Email: <winterhamfest@noars.et>. Website: <www.noars.net>. Talk-in 146.70 (PL 110.9).

IRVING, TEXAS — The Irving Amateur Radio Club will hold its Hamfest from 8 a.m. to 1 p.m., Saturday, March 2 at the Betcha Bingo Hall, 2420 W. Irving Boulevard. Contact: Ken Hanson, N2VIP, (609) 510-3068. Email: <ken@n2vip.org>. Website: <http://irvingarc.org>. Talk-in 146.720 (PL 110.9). VE exams.

RUSSELLVILLE, ARKANSAS — The Arkansas River Valley Amateur Radio Foundation will hold the Russellville Hamfest beginning 9 a.m., Saturday, March 2 at the L.V. Williamson Boys & Girls Club of the Arkansas River Valley, 600 East 16th Street. Email: <russvillehamfest@gmail.com>. Website: <http://sites.google.com/view/arvarf>. VE exams.

CONCORD, NORTH CAROLINA — The Mecklenburg Amateur Radio Society will hold the Charlotte Hamfest and 2019 ARRL North Carolina Ham Radio Convention from 3-7 p.m., Friday, March 8 and from 8:30 a.m. to 4 p.m., Saturday, March 9 at the Cabarrus Arena & Events Center, 4551 Airport Road. Phone: (704) 948-7373. Website: <www.charlottehamfest.org>. Talk-in 146.655 or 146.940 (PL 118.9). VE exams, card checking.

BRAZIL, INDIANA — The Wabash Valley Amateur Radio Association will hold its 2019 Hamfest & Computer Expo from 8 a.m. to noon, Saturday, March 9 at the Clay County 4-H Fairgrounds, 6550 North State Road 59. Email: <hamfest@w9uuu.org>. Website: <http://w9uuu.org>. Talk-in 146.685 (PL 151.4).

EAU CLAIRE, WISCONSIN — The Eau Claire Amateur Radio Club will hold its 32nd Annual Amateur Equipment Auction from 8 a.m. to 2 p.m., Saturday, March 9 at the Saving Grace Lutheran Church, 2124 East Ridge Center. Website: <www.ecarnc.org>.

LINCOLN, NEBRASKA — The Lincoln Amateur Radio Club will hold the Lincoln Hamfest and 2019 ARRL Nebraska State Convention from 8 a.m. to 3 p.m., Saturday, March 9 at the Lancaster Event Center, 4100 North 84th Street. Website: <www.lincolnhamfest.org>. Talk-in 146.76-. VE exams.

PUYALLUP, WASHINGTON — The Mike & Key Amateur Radio Club will hold the 38th Annual Mike and Key ARC Electronics Show & Swap Meet beginning 9 a.m., Saturday, March 9 at the Puyallup Fair & Events Center-Pavilion Exhibition Hall, 110th Avenue SW. Contact: Diane Dinkelman, N7WA, (253) 631-3756. Email: <ddmdink@gmail.com> or <n7wa@arrl.net>. Talk-in 146.82- (PL 103.5). VE exams. (Continued on page 36)

morning, we used mainly 17 and 20 meters. Around noon, 15 meters was sometimes open for a few hours, mainly to Japan and some parts of North America. The 12-meter band was open only to Japan. For Europe, 17 and 20 were the best bands. Overall, 20 was the best band for all continents; 30, 40, and 80 meters were also good, but quite difficult for reaching Western Europe. On the third day, we moved the 40-meter vertical closer to the beach. The noise on 40 was high. After we moved the antenna, the noise level was reduced by at least 6 dB. We had no coax cable left, so we had to combine the 17- and 40-meter feeds. It seems that everything between 350° and 10° (our path to Western Europe) was extremely difficult. That is why there are only a few F, DL, ON, PA, G, and GM calls in the log. The propagation stopped around Poland and didn’t move further to the west. On 60 meters, we had a tremendous S9+ QRM, something generated in our resort. We changed the antenna polarization from vertical to horizontal, but that didn’t help. The next day, we moved the dipole 50 meters farther away from the buildings, but the QRM was still the same. We would have had many more QSOs in the log without this noise. FT8 was doing a good job getting the weak signals out of the QRM. The last morning, the QRM was at a minimum and we logged...
many Western Europeans on 60 meters. Our DHD antenna was not performing well. We tried it the first day, but without success on all the low bands. Propagation on 160 was terrible. We were forced to use an inverted-V instead of an inverted-L. The noise on this band was S9, very difficult to copy anything. On the DHD antenna the signals were not readable at all. I also tried listening on the 80-meter vertical, but still had a very high noise level.

So we were forced to use FT8 on this band as well. We didn’t make many QSOs on 160 meters. In total, we made a little bit more than 17,098 QSOs, of which 7,240 were unique calls. We expected a little bit more, but the circumstances did not allow much more. During our last weekend on Tonga, we participated in the CQ World Wide CW Contest. Participating in a contest from the Pacific is completely different than contesting from Europe. It was a

Photo I. Ronald, PA3EWP, operating RTTY.

Photo J. When the bands were dead, group members did some sightseeing (by bike) and shopping, such as at this local market.
nice experience and we learned a lot from it. We made a total of 1,700 QSOs in the contest. Without the contest, we would have made more QSOs in the same amount of time. It was difficult to find a clear frequency and, after that, to keep your frequency. A lot of times we were covered by the NA and EU mesh.

Last Day
We had to pay a lot of overweight baggage fees coming to Tonga. We didn’t want to pay it again on the way back. The price of the overweight was more than the new value of the mast and coaxial cable. We decided to find another way to send the fiber mast and coax back home; the alternative was to leave it on Tonga and buy new ones at home. But why not send it to Tarawa for my next DXpedition to Kanton, T31EU? After a few telephone calls, we made the decision to send it to Tarawa, which was much cheaper than sending it back home and taking it with us to Kanton in February.

The last morning, we packed the ski bag (35 kilograms – Photo K) and brought it to Fiji airways for transport via Fiji to Tarawa. Chuck, our contact person on Tarawa, would take care of the final handling of the ski bag. We had another quick visit to town before we went back by bus to the resort. The last stuff was packed and, at the end of the afternoon, we were ready to leave for the airport. After arriving in Auckland, we went to a hotel for a few hours of sleep. At 9 a.m., we went by taxi to the city center for breakfast. Afterward, we walked around a little bit and went back to the airport. The flight from Auckland to Doha was 17-1/2 hours, and very bumpy. Arriving at Doha airport, we had an 8-hour layover until our departure back home. We went to a lounge to relax, had a nice shower and breakfast. After a few hours, the team separated as Pat went back to London, Tom returned to Edinburgh, and Martin and I flew to Amsterdam. Six hours later, we were back in the Netherlands after traveling for two days.

QSL
Tom, GM4FDM, is our QSL manager. All QSLs will be answered by the bureau, OQRS, and direct. In addition, a short time after our DXpedition the logs were uploaded to LoTW.

Many thanks for the support from the following DX clubs: OHDXF Finland, SDXF Swiss DX Foundation, EU DXF European DX Foundation, LYNX DX Group, Clipperton DX Club, BARTG, LADXG - LA DX Group Norway, FEDXP Far East DXPloiter, EI0X group, GPDX Portuguese DX group, CDXC - The UK DX Foundation, The East Tennessee DX Association, Lone Star DX Association, Mediterraneo DX Club, German DX Foundation, GMDX Group, and the Radio Society of Great Britain. Thanks also to the many individual sponsors, especially Alex, PA1AW, for his support and maintaining the website. For more information and photos, see our website at <http://tonga.lldxtr.eu> and Clublog for more statistics.

SPURIOUS SIGNALS

By Jason Togyer W3MCK
spuriouscomic.blogspot.com

© 2019 Jason Togyer W3MCK | togyer@gmail.com | CQ Magazine

Photo K. Rather than pay excess baggage fees two more times, the group packed up the fiberglass antenna masts, and coaxial cable in a ski bag and shipped it to Tarawa for PA3EWP’s next Pacific adventure — to Kanton (T31EU) — scheduled for this month.
Recently, I had the opportunity to try the SOTABEAMS Tactical 7000hds, a fully collapsible, portable antenna mast designed for the ham on the go. As a ham who enjoys portable operation, a mast or other support structure is necessary for the successful deployment of a wire antenna when in the field, especially if operating in an area void of trees and other supports. I put the Tactical 7000hds through the rigors of portable operation and used it as my primary support during several portable operations last fall. I deployed the mast under windy conditions, during periods of light rain, and at times when there was a flake or two of snow in the air. Each adventure was different, and for good reason, as I wanted to see how the mast performed under a variety of conditions.

About SOTABEAMS
If you are not familiar with SOTABEAMS, it is a company based in the United Kingdom that offers a variety of products designed specifically for amateur radio. After reading the SOTABEAMS website, I learned that the company’s CEO, Richard Newstead, G3CWI, has a genuine passion for portable operation and understands that the right accessories and equipment are imperative for successful field operations, especially when venturing into the wilderness. G3CWI is also the co-founder of the well-known Summits on the Air (SOTA) program, which has been incorporated into his company’s name.

SOTABEAMS offers a line of telescopic masts, multi-band dipole and end-fed antennas, radio accessories (audio filters, DC power and RF cables), and more. The most unique item offered by SOTABEAMS may be the SOTAkite, a kite designed to lift wire antennas in wind speeds between 5 and 18 miles per hour.

The entire line of products offered by SOTABEAMS can be purchased via their website and shipped directly to you from their facility in the United Kingdom, or purchased in the U.S. from DX Engineering, SOTABEAMS’ stateside partner / overseas agent that stocks most of their product line, including the Tactical 7000hds.

The Tactical 7000hds
The Tactical 7000hds is a heavy-duty telescopic mast that extends to 23 feet and collapses to 23 inches for easy transport into the field. The letters hds in the product’s name stand for “heavy duty short,” as this mast was designed to be more rugged than other masts available in the marketplace, yet short enough for ease of portability. Its compact size makes slipping this mast into a backpack, go-bag or similar carry bag a cinch. It can also be placed diagonally in a travel-sized carry-on suitcase for
air travel. The mast is constructed of 14 fiberglass pole sections that collapse inside each other for easy deployment and takedown. Each pole friction-locks firmly in place by twisting it during deployment. Twisting each pole in the opposite direction allows each section to collapse inside one another during takedown. The mast is nonconductive and is made from heavy glass-fiber composite (fiberglass) that provides strength and balance. For those who desire a low profile when operating portable, the mast is military olive in color and comes with a camouflage carry bag.

The mast weighs 3.64 pounds and its 14 pole sections range in diameter from 2.05 inches (base) to 0.16 inches (top). The bottom base has a screw cap that measures 2.4 inches in diameter and supports a rubber shock absorber that helps prevent the poles from cracking or breaking when collapsing the mast. In the event a pole needs to be repaired or replaced, the bottom cap can be unscrewed allowing the sections to be removed. In the unlikely event replacement parts may be necessary, SOTA-BEAMS offers these for purchase on its website.

Performance in the Field

The Tactical 7000hds arrived at my doorstep from the United Kingdom packed firmly in a heavy cardboard cylinder. An instruction sheet was packed with the mast. Although the mast comes ready for deployment, I perused the instructions and went online to YouTube to watch a short video made by SOTABEAMS about the Tactical 7000hds and a second SOTABEAMS video showing their method for erecting a collapsible mast in the field. Since the Tactical 7000hds does not come with a guy kit, I was concerned about how the mast would stay upright since it is not designed to be driven into the subsurface, but instead the base of the mast stands freely on the ground. After watching the video, I learned that only three supports (guy lines) are necessary to keep the mast upright. If I used a dipole antenna in an inverted-V configuration only one additional support line (comprised of masonry cord or light rope) would be necessary since the dipole’s legs would serve as two of the three support (guy) lines. I was happy when I learned this information since the inverted-V is my favorite antenna for portable operation. There are several tips in the SOTA-BEAMS videos that beginners and more experienced users of collapsible

Photo B. Extending and locking pole sections.

Photo C. Ready to be put into position.
masts may find helpful. These videos can be seen online by searching for “Tactical 7000hds Heavy Duty Antenna Mast” and “Erecting a SOTABEAMS HF Dipole” on YouTube.

It is important to note the if the mast will be used to support an end fed antenna, three guy lines will be necessary. I used masonry cord as guys to support the mast when using it with this type of antenna. SOTABEAMS offers a variety of mast guying kits and other products to support the mast, including drive-on car stands and suction cup mounts for securing it to the side of a motorhome or RV.

A Walk in the Park
My first outing with the Tactical 7000hds was at a local park. I followed the guidance provided in the SOTABEAMS YouTube videos for deploying the mast and, within minutes, it was freestanding and supporting a 20-meter inverted-V dipole. The only items needed in addition to the mast were my dipole, masonry cord, and three ground stakes for securing support lines. The dipole I used was constructed of 22-gauge stranded wire with 300-ohm twin lead for the feedline (same antenna setup I use for portable operations). I then tried to support an end-fed wire with the mast. I used masonry cord to support the mast (three guy lines). After the mast was standing, I tugged and pulled on the end-fed wire that I had attached near the top of the mast to check stability.

Surprisingly the mast stayed erect with no swaying. Even Mother Nature with her gusty winds could not topple it. I found the top of the mast flexed nicely with no indication it would fall over as I tugged and pulled on the end-fed wire. Closer inspection after collapsing the mast confirmed that there was no damage or stress to the smaller diameter poles near the top after I had tugged hard on the antenna.

After deploying and collapsing the mast a few times, I was able to set up the mast and antenna (whether using the Inverted V or end-fed antenna) in about three minutes. Takedown (collapsing the mast and rolling up the antenna) took about the same amount of time.

Likes and Dislikes
The small size of this mast when collapsed is truly amazing. After multiple uses, I still find it difficult to believe that SOTABEAMS packed the strength and durability of this mast in such a small package. In the past, I have homebrewed my own masts for use in the field and the finished products are several feet in length, heavy, and not nearly as robust as the Tactical 7000hds. Since discovering the Tactical 7000hds, I have retired my other homebrew masts and made a permanent home in my backpack for this little gem.

One item that I believe should be included with the mast is a ring or insulator that slips over the top pole to attach the antenna. I attached the antenna to the mast by wrapping several turns of masonry cord approximately one foot below the top of the mast and securing the cord to the pole with electrical tape. I then tied the masonry cord to my antenna wire. It was not until later that I discovered SOTABEAMS offers a laser-cut insulator (Versatile Top Antenna Insulator) that is designed to slide over the top pole for securing a wire antenna. The insulators are sold in packs of five and are relatively inexpensive. I would like it if SOTABEAMS included one of their Versatile Top Antenna Insulators with each mast sold as this is an item that many hams may overlook until they are in the field and have no way to attach their antenna to the pole. Although my masonry line idea works for attaching the antenna to the mast, I believe the insulators will do a much better job in securing this connection.

Lastly, I found the pole sections to be slippery which made it difficult (for me) to twist each section when locking them into place. I need to point out that this is not a dislike, but rather an observation. The second time I took the mast into the field I packed a pair of latex gloves (the same type of gloves you can purchase at home improvement and hardware stores for pennies on the dollar) in my backpack. The latex gloves provided me with all the grip necessary to twist the poles together.

Final Comments
The Tactical 7000hds hits the mark for a portable, telescoping mast and has the strength necessary to support a variety of wire antennas. I can report the poles easily collapsed and pulled out during cold, wet, and hot conditions (temperatures ranging from 30° to 85° Fahrenheit) and I never had any issue in erecting or collapsing the mast. Whether you are a serious portable operator or get into the field only once or twice a year, you owe it to yourself to add the Tactical 7000hds to your portable setup. The Tactical 7000hds retails for $74 U.S. (plus international shipping) direct from SOTABEAMS or $105.99 via DX Engineering. Additional information and product ordering is available via the SOTABEAMS website <www.SOTABEAMS.co.uk> or via DX Engineering at <www.dxengineering.com> or you can call (800) 777-0703.

www.cq-amateur-radio.com

Photo D. Up and supporting an inverted-V dipole.
Several years ago, I had a mobile CW station in one of my pickup trucks, consisting of my Kenwood TS-440AT and Hustler antenna. With that, I was able to work mobile CW. But the 440 was the only HF radio I had, so it did double duty as my home station as well. That proved to be inconvenient, to say the least. So … move ahead to the present and I now have two Elecraft K3s, one as my home station rig and the other for operating away from home.

The KX3 is a great little radio. I have used it for portable operations from the Grand Canyon in Arizona to the Black Forest in Germany. My job required me to travel around the state of Pennsylvania and the KX3 made many trips with me to motels and fields and parks. I have always wanted to set up the radio in the car and see how it worked as a mobile rig (Photos A and B). I thought with 5 watts and a mobile antenna, it probably wouldn’t work too well, especially since any mobile antennas is a poor compromise at best.

At the Dayton Hamvention® in 2017, I purchased some parts. I picked up a Wolf River Silver Bullet coil, a 53-inch stinger for the top of the coil, and a Lido cup-holder mount. I had a 2-inch receiver on my 2013 Ford Escape, so I got a piece of flat steel and bent it 90° to attach the antenna (Photo C). Using a mirror mount, I put the antenna together. But I did not put the coil at the bottom; rather, I put it above a Hustler 54-inch mast. There are two reasons for this design.

1) A coil in the middle of a vertical antenna improves the radiation resistance and, with 5 watts, I needed all the help I could get. I did the math on the improvement of radiation resistance and it makes a 65.13% improvement on 20 meters. With the coil at the bottom on 20 meters radiation resistance is at 7.6 Ohms, while a coil in the middle radiation resistance is at 12.55 Ohms. Still very poor but better.

2) The second reason for the design change came from the ease of adjusting the Wolf River coil if I could stand up instead of having to bend over. My 67-year-old back likes that part. I know that the car’s body and other metal parts were acting as the other half of the antenna and I thought I should bond all the metal parts together, but first I wanted to see just how it worked without all this extra work.

To set the tap on the coil to the correct position I have a piece of wood, about the size of a ruler. I put marks on it for the proper position for the different bands (Photo D). Using it, I can quickly set the tap and then use the internal tuner in the KX3 for final adjustment. I also installed a Hustler Quick Connect mount to facilitate removal of the antenna when needed, like when taking the car to the service shop, etc. I did have to tie a small piece of rope around the bottom of the coil and attach it to the roof rack on the car to keep it from swinging too much.

On The Air
I set out to see just how well this would work. I was not expecting too much. But to my surprise, it worked pretty well. I was able to work several stations in the U.S and Canada and even some DX. After a while, I had worked enough DX in Europe and the Caribbean that I thought maybe I could work DXCC with this setup. A quick check of the map showed me there were plenty of DX entities in those two parts of the world.
to accomplish this goal. I finished the installation in early June 2017 and by late October, I had 17 countries worked. After the CQ World Wide CW DX Contest, I had 48 countries worked. Almost halfway there. I will admit it was tough going to pick up new ones during a big DX CW contest. I spent a lot of time hoping conditions would improve and the pileups would decrease. By the end of the ARRL DX CW contest, I was at 56 countries worked. The CQ WPX contest put me at 93 and now the goal was in sight.

One of the contacts in the CQ WPX contest was with Xenia, ZL4YL, 8,630 miles from my driveway to her QTH (shown in the January 2019 page of the 2019-2020 CQ calendar – ed.). I’ll admit she did the heavy lifting on this one with her towers and stacked Yagis. By vacation time, I was sitting at 95 countries. We took a long vacation to Europe to visit our son and his family. The KX3 went with me and saw duty in Normandy and near Colmar, France; also at my son’s house in Ghent, Belgium and the Black Forest in Germany. Upon my return home, I continued the quest. By September 28, I was at 99. Finally, on October 16, I worked MWØEDX for number 100. This accomplishment was recognized by the North American QRP CW Club (NAQCC) with its Simple Wire Antenna DXCC certificate #1 for mobile QRP! (Photo E)

Lessons Learned
I spent many cold and hot hours setting in the car listening to a new country call CQ and working the pile up, only to have the station go QRT when they heard no one calling

Photo B. Interior of NJ3K’s mobile station, built around his Elecraft KX-3 transceiver.

Photo C. NJ3K’s mobile vertical antenna, mounted on his Ford Escape.

Photo D. Taps on the coil are easily changed with this handy guide, marked off at the proper tap point for each band.
ANNOUNCEMENTS (from page 28)

TULLAHOMA, TENNESSEE — The Middle Tennessee Amateur Radio Society will hold the MTARS Tullahoma Hamfest from 8 a.m. to 2 p.m., Saturday, March 9 at the First United Methodist Church, 208 Washington Lane, LaVergne, Tennessee. Contact: Larry Cagle, K9WLO, 100 Urban Farms Road, Manchester, TN 37355. Phone: (251) 680-3520. Email: <lkc84wo@arrl.net>. Website: <www.qsl.net/mtars>. VE exams.

KALAMAZOO TOWNSHIP, MICHIGAN — The Southern Michigan Amateur Radio Society will hold the Michigan Crossroads Hamfest & Radio Swap from 8 a.m. to noon, Saturday, March 16 at Wings Event Center, 3600 Vanrick Drive. Contact: SMARS, P.O. Box 934, Battle Creek, MI 49016. Phone: (269) 815-8007. Email: <crossroadshamfest@w8df.com>. Website: <www.w8df.com>. Talk-in 147.00+ (PL 94.8). VE exams.

MIDLAND, TEXAS — The Midland Amateur Radio Club will hold the 64th Annual St. Patrick’s Day Hamfest and 2019 ARRL West Texas Section Convention from 8 a.m. to 2 p.m., Saturday, March 16 at the Martin Luther King Community Center, 2300 Butternut Lane. Website: <https://hamfest.w5qgg.org>. VE exams.

STUART, FLORIDA — The Martin County Amateur Radio Association will hold the 44th Annual Stuart Hamfest beginning 8 a.m., Saturday, March 16 at the Martin County Fairgrounds, 2616 SE Dixie Highway (A1A). Contact: MCRARA Hamfest Chairman, P.O. Box 1901, Stuart, FL 34995. Phone: (561) 309-8138. Email: <hamfest@mcrara.com>. Website: <www.stuathamfest.com>. Talk-in 147.060+. VE exams. and Training Facility, 8400 South Zero Street. Contact Mike Cole, W5TMC, (918) 427-1431 or (479) 522-3683. Email: <mikew5tmc@gmail.com>. Website: <www.w5tmc.org>. Talk-in 147.00+. VE exams.

BUFFALO, MINNESOTA — The Maple Grove Radio Club will hold its Midwinter Madness Hamfest from 8 a.m. to 1 p.m., Saturday, March 16 at the Buffalo Civic Center, 1306 County Road 134. Email: <swap@k0ltc.org>. Website: <http://k0ltc.org>. Talk-in 147.000+. VE exams. (703) 698-6158. Website: <www.viennawireless.net>. Talk-in 146.910. VE exams, DXCC / WAS / VUCC and CQDX card checking.

JEFFERSON, WISCONSIN — The Tri County Amateur Radio Club will hold Hamfest2019 beginning 8 a.m., Sunday, March 17 at the Jefferson County Fairgrounds Activity Center, 503 North Jackson Avenue. Contact: Johnny, KD9IQC, (920) 723-7439. Email: <hamfest@w9mog.org>. Talk-in 145.49 (PL 123). VE exams.

PERRYBURG, OHIO — The Toledo Mobile Radio Association will hold the TMRA Hamfest from 8 a.m. to 2 p.m., Sunday, March 17 at the Owens Community College-Student Health and Activity Center, 30335 Oregon Road. Website: <www.tmrahamradio.org>.

CHARLESTON, WEST VIRGINIA — The 35th Annual Charleston Area Hamfest and 2019 ARRL West Virginia Section Convention will be held from 9 a.m. to 2 p.m., Saturday, March 23 at the Charleston Coliseum & Convention Center, 200 Civic Center Drive. Contact: Rick Cummings, WV8RC, (304) 610-6404. Email: <rickwv8rc@gmail.com>. Talk-in 145.35 (PL 91.5). VE exams, DXCC / WAS / VUCC and CQDX card checking.

GODFREY, ILLINOIS — The Lewis & Clark Radio Club will hold its 2019 Hamfest from 7 a.m. to noon, Saturday, March 23 at the Lewis & Clark Community College-The Commons, 5800 Godfrey Road. Email: <hamfest@k9ham.org>. Website: <https://k9ham.org>. Talk-in 145.230- (PL 79.7). VE exams.

MT. VERNON, MISSOURI — The Ozarks Amateur Radio Society will hold its 2019 Hamfest from 8 a.m. to 1 p.m., Saturday, March 23 at the Mt. Vernon Arts and Recreation Center, 822 W. Mt. Vernon Boulevard. Contact: Bob Myer, KAØRM, 704 Windsor Avenue, Aurora, MO 65605. Website: <http://w2ooar.com>. Talk-in 146.970- (PL 162.2).

ANNANDALE, VIRGINIA — The Vienna Wireless Society will hold its Winterfest from 6 a.m. to 1 p.m., Sunday, March 24 at the Northern Virginia Community College Annadale Campus-Richard J. Ernst Cultural Center, 8333 Little River Turnpike. Contact: Doug, AK4AO, (703) 698-6158. Website: <www.viennawireless.net>. Talk-in 146.910. VE exams, WAS / DXCC / VUCC card checking.

SEVIERVILLE, TENNESSEE — The Sevier County Amateur Radio Society will hold the 2019 Sevier County Hamfest and 2019 ARRL Delta Section Convention from 8 a.m. to 3 p.m., Saturday, March 30 at the Sevier County Fairgrounds, 754 Old Knoxville Highway. Email: <hamfest@seviercountyrars.org>. Website: <http://seviercountyrars.org>. VE exams, card checking.

APRIL

FORT SMITH, ARKANSAS — The Fort Smith Area Amateur Radio Club will hold the Hanging Judge Hamfest from 8 a.m. to 2 p.m., Saturday, April 6 at the Sebastian County Emergency Communications and Training Facility, 8400 South Zero Street. Contact Mike Cole, WSTM, (918) 427-1431 or (479) 522-3683. Email: <mikew5tmc@gmail.com>. Website: <www.hangingjudgehamfest.com>. VE exams.

Photo E. The North American QRP CW Club recognized NJ3K for working 100 countries on CW while operating QRP mobile with its Simple Wire Antenna DXCC Award #1 for the category.

them. I was there, but they could not hear me. I learned a lot about patience and propagation. Several times I could just barely hear the DX station calling, but after an hour or so things improved enough that I could work them. I had a rule of thumb that worked most of the time: If their signal level was an S-5, they stood a pretty good chance of hearing my 5 watts; after all, one S-unit is 6 dB. The difference between a 100-watt signal and a 5-watt signal is -13 dB, a little over 2 S-units. So if they were running 100 watts and had an S-5 signal, I should be about an S-3 on their end. But if they were transmitting 1,500 watts, that is almost -25dB, which works out to a 4 S-unit change. So if they were at S-5, I would only be at S-1. Big difference. I will admit some of the DX definitely could hear me better than others. Several times, they were barely moving the S-meter and I would have to call multiple times at a slow WPM rate and they could pull my signal out of the noise.

As for propagation, it seems that a 4,000-mile distance was quite the norm. I have done this many times with my portable operations and just a 25-foot wire tossed up in a tree and another 25 feet lying on the ground. I have worked to and from Europe several times with this setup and 5 watts of CW.

Some of the notable contacts were: 2-18-18, Z60A on 20 meters; 3-22-18, 3C2W on 17 meters; 11-25-17, TO2SP on 20 meters; 4-9-18, PJ5/AI5P on 30 meters; 2-18-18, VP2MSS on 15 meters, and 5-26-18, ZL4YL on 20 for the greatest distance. Band breakdown: 20, of course, is the workhorse with 72 QSOs; next was 15 meters with 12, then 40 meters with 9, 17 meters had 4, and 30 meters had 3 QSOs.

What does all this mean? Well, a couple of things. First, you can work DX with less, way less, power than an optimum station. Next, there is hope for those in areas where even a simple dipole antenna is frowned upon. QRP does, in fact work. We have all heard this and there is a lot of proof it does. Finally, it was fun — frustrating at times — but a lot of fun overall. Throwing on a jacket and slipping on my shoes to run out to the car in the winter, freezing while trying to work a new contact, might seem a bit extreme, but it’s the price we pay.
Enjoy the Hobby
read, read, read...

DITS and DAHS
The A B C... of Morse Code Operating
by Ed Tobias, KR3E
This small but solid guide is the perfect read for those interested in learning or improving CW operating techniques!

Within its pages you'll find:
- The secret of becoming a proficient CW Operator
- Where and how to practice, practice, practice.
- Straight Key or Paddle?
- Adjusting your Straight Key or Paddle
- Keyers, Iambic Keying and Bugs and much more

6 X 9 Paperback $15.95

DX World Guide
by Franz Langner, DJ9ZB
Known throughout the DX and DXpedition world as a meticulous and tireless operator, Franz Langner, DJ9ZB, is also noted as one of the most knowledgeable individuals in Amateur Radio in terms of documenting DXCC entities.

This is the fourth edition of his series of books bearing the title DX World Guide. It was first published in Germany in 1988 and followed by a second edition, also in Germany in 1977. The third edition, published in the U.S.A. in 2012 was the first to use color throughout. This 380-page, fourth edition, also full color throughout, includes information on well over 300 DX entities.

Whether used as a desk reference for the DXer of any level of proficiency or as a “wish book” for DXers just starting his or her DXCC journey, the new DX World Guide is a worthy and pleasant companion!

6 X 9 Paperback – only $49.95
Book on CD – only $34.95
Buy both for only $68.95

The NEW Shortwave Propagation Handbook
by W3ASK, N4XX & K6GKU
This authoritative book on shortwave propagation is your source for easy-to-understand information on sunspot activity, propagation predictions, unusual propagation effects and do-it-yourself forecasting tips.

8.5 X 11 Paperback $19.95
CD Version $14.95
Buy both for only $29.95

The Short Vertical Antenna and Ground Radial
by Sevick, W2FMI
This small but solid guide walks you through the design and installation of inexpensive, yet effective short HF vertical antennas.

With antenna restrictions becoming a problem, it could keep you on the air!

6 x 9 Paperback $10.00

33 Simple Weekend Projects
by Dave Ingram, K4TWJ
Do-it-yourself electronics projects from the most basic to the fairly sophisticated. Practical tips and techniques on creating your own projects.

6 X 9 Paperback $17.95

Shipping & Handling:
U.S. add $7 for the first item, $3.50 for the second and $2 for each add’l item. FREE shipping on orders over $100 to one U.S. address. CN/MX-$15 for 1st item, $7 for 2nd and $3 for each add’l. All Other Countries-$25 for 1st item, $10 for 2nd and $5 for each additional.

CQ Communications, Inc.
Phone 516-681-2922 • FAX 516-681-2926 http://store.cq-amateur-radio.com
It was the cruise of a lifetime ... but not to some exotic destination. Eleven days at sea with his son’s scout troop, and QRP ham radio came along for the trip.

QRP on the Cruise of a Lifetime

BY FRANK KROZEL,* K9GH

Back in 2004, I had the opportunity to take a sailing trip of a lifetime with my son, Brandon, KC9DNH, on a Boy Scout event off the Florida Keys. The captain basically loaned his boat — named the “Soggy Paws” (Photo A), to the Boy Scouts of America and the scouts were taught many things from basic boating to chart reading and everything they needed to “stay alive” for a while on the water (Photo B). We did 11 days I believe on the water, moored every night where the boys wanted to be.

In preparation for the trip I packed everything I thought I would need — including my FT-817. When we arrived for the sail, the captain told us each we could fill only one bag, which he supplied. The bags were only 8 x 15 inches, so there wasn’t too much space in it for clothing but YES, I could operate. As any good ham would do, I left much of my needed clothing back at port … but not my ham gear. That went in the bag. I was one of the parents so we had sleeping accommodations inside the boat (the boys slept on the deck), and when shown my sleeping arrangements, I found I was sleeping next to a Kenwood TS-50. This was used by the ship’s owner for communications as well as Winlink. But we did not use it for any communications. I was able to make several contacts with my 817 (Photo C), including some folks nearby in the Caribbean as well as a few hams (with beams) back in 9-land.

It’s been 15 years since that trip, and Brandon is all grown up, but I will never forget our QRP boating adventure in the Caribbean.

* <k9ghfrank@gmail.com>
True RF Legend

True Performance

FT dx 5000MP Limited

RF µ-Tuning Unit (Optional):
- Provides ultra-high-Q RF preselection selectivity

Congratulations

We congratulate WRTC 2018 Y81N Winning Team from Lithuania

The winners of the World Radio Team Championship 2018
Gedas Lucinskas (LY9A) and Mindis Jukna (LY4L)

Rig used: 2 x FTDX5000MP

For the latest Yaesu news, visit us on the Internet: http://www.yaesu.com

Specifications subject to change without notice. Some accessories and/or options may be standard in certain areas. Frequency coverage may differ in some countries. Check with your local Yaesu dealer for specific details.
Working with low-power gear often requires the measurement of very low current levels. K2AOP’s meter circuit allows you to accurately measure currents in the picoamp range! If you don’t have a calculator handy, that’s one-millionth of a microamp, which itself is one-millionth of an ampere. Bonus: John’s meter also lets you measure extremely high resistance levels.

An Ideal Low Current and Ultra High Resistance Meter

BY JOHN CLARK, K2AOP

This circuit was first built around 1971 to measure leakage current of the newly available CMOS integrated circuits. Over the years, it has been improved as better operational amplifiers (op-amps) and higher value resistors have become available. This version incorporates Analog Devices’ zero-drift 130-dB gain ADA4638 op-amp and Ohmite’s ultra high value precision resistors.

This amazing but simple current measuring circuit provides the following features:

1. It measures current with less than 10 µV across its input terminals.
2. It delivers 10 volts output for full-scale ranges of 10 pA to 10 mA.
3. It is undamaged by a continuous overload of 1-amp or short 10-amp peak.
4. It provides high precision, limited only by range resistor tolerance and the display DVM accuracy.
5. It makes possible the accurate measurement of ultra-high resistance.

Circuit Description

This current measuring circuit (Figure 1) has its current-sense resistors inside a feedback loop but the measured current level does not change as it flows through the loop. When the loop is balanced, there is less than 10 microvolts across the meter input terminals and op-amp inputs while voltage across the feedback/current sense resistor is exactly I times R.

The ADA4638 uses high gain and negative feedback to accomplish this by providing the power to make the voltage across the resistor I times R while adjusting the voltage at the end of the resistor so that the inverting input voltage is within 10 µV of circuit ground. During an on-scale current measurement, the usual voltage drop across a current-sense resistor is effectively canceled by this circuit.

The complete current path is: +input, resistor, ADA4638, power supply, PS return, input return.

All input current flows through the current sense/feedback resistor because the protection diodes don’t conduct with 10 µV and ADA4638 bias current is canceled by current from the zero adjust circuitry.

Inserting some values to establish the potential accuracy: If input current is exactly 10 mA and the resistor is exactly 1K, the voltage across the 1K will be exactly -10 volts. To use this result, voltage must be measured across the resistor to circuit ground. Unfortunately, when that measurement is made, the 10-µV maximum terminal voltage adds error. When the error is added to the exact -10 volts, we have -10 volts ±10 µV or ±10V ±1PPM or -10 volts ±0.0001%, which applies from 10 pA to 10 mA when using the ADA4638.

Construction Notes

The PC board mask and parts layout diagrams are in Figures 2, 3, and 4. Component information is in Table 1. A packaged, complete working pA meter, Photos A and B, is shown.
Figure 1. Schematic of the K2AOP picoamp measurement circuit.

E (VOLTMETER) = I (INPUT) \times R (RANGE SWITCH)

VERY HIGH RESISTANCE IS MEASURED WITH AN EXTERNAL 10.00V. \(R = 10V/1\text{meter} \)

DURING ON-SCALE MEASUREMENT, INPUT TERMINAL VOLTAGE < 0.000,010V (10 uV MAX).

CONTINUOUS INPUT OVERLOAD SHOULD BE LIMITED TO 1 A.
<table>
<thead>
<tr>
<th>P/N</th>
<th>QNT</th>
<th>VALUE</th>
<th>TOL%</th>
<th>WATTS</th>
<th>VEND</th>
<th>P/#</th>
<th>mfg</th>
<th>PKG</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>0.1MFD</td>
<td>200V</td>
<td>PP</td>
<td>Digi</td>
<td>338-3417-ND</td>
<td>cd</td>
<td>RADIAL</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>10μF</td>
<td>200V</td>
<td>NPO</td>
<td>Digi</td>
<td>478-502-1-ND</td>
<td>avx</td>
<td>AXIAL</td>
</tr>
<tr>
<td>C3</td>
<td>1</td>
<td>1500PF</td>
<td>50</td>
<td>NPO</td>
<td>Digi</td>
<td>478-7672-ND</td>
<td>avx</td>
<td>RADIAL</td>
</tr>
<tr>
<td>C4, 5</td>
<td>2</td>
<td>1200PF</td>
<td>50</td>
<td>NPO</td>
<td>Digi</td>
<td>490-8641-ND</td>
<td>murata</td>
<td>"</td>
</tr>
<tr>
<td>C5</td>
<td>1</td>
<td>680PF</td>
<td>50</td>
<td>NPO</td>
<td>Digi</td>
<td>490-9041-1-ND</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>C6</td>
<td>1</td>
<td>560PF</td>
<td>50</td>
<td>NPO</td>
<td>Digi</td>
<td>490-8703-ND</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>C7</td>
<td>1</td>
<td>470PF</td>
<td>50</td>
<td>NPO</td>
<td>Digi</td>
<td>478-4841-1-ND</td>
<td>avx</td>
<td>AXIAL</td>
</tr>
<tr>
<td>C8</td>
<td>1</td>
<td>330PF</td>
<td>50</td>
<td>NPO</td>
<td>Digi</td>
<td>399-4468-1-ND</td>
<td>kem</td>
<td>AXIAL</td>
</tr>
<tr>
<td>C9</td>
<td>1</td>
<td>15PF</td>
<td>50</td>
<td>NPO</td>
<td>Digi</td>
<td>399-4456-1-ND</td>
<td>kem</td>
<td>AXIAL</td>
</tr>
<tr>
<td>C10</td>
<td>1</td>
<td>0.01MFD</td>
<td>50V</td>
<td>X7R</td>
<td>Digi</td>
<td>478-1542-1-ND</td>
<td>avx</td>
<td>1206</td>
</tr>
<tr>
<td>C11</td>
<td>1</td>
<td>0.1MFD</td>
<td>50V</td>
<td>X7R</td>
<td>Digi</td>
<td>478-1556-1-ND</td>
<td>avx</td>
<td>1206</td>
</tr>
<tr>
<td>C12-14</td>
<td>3</td>
<td>0.1MFD</td>
<td>50V</td>
<td>X7R</td>
<td>Digi</td>
<td>478-1560-1-ND</td>
<td>avx</td>
<td>1206</td>
</tr>
<tr>
<td>C15, 16</td>
<td>2</td>
<td>0.22MFD</td>
<td>50V</td>
<td>X7R</td>
<td>Digi</td>
<td>487-3187-ND</td>
<td>avx</td>
<td>RADIAL</td>
</tr>
<tr>
<td>C17, 18</td>
<td>2</td>
<td>3300μF</td>
<td>50V</td>
<td>ALUM</td>
<td>Digi</td>
<td>478-3187-ND</td>
<td>avx</td>
<td>RADIAL</td>
</tr>
<tr>
<td>C19</td>
<td>1</td>
<td>10μF</td>
<td>50V</td>
<td>X7R</td>
<td>Digi</td>
<td>487-3187-ND</td>
<td>avx</td>
<td>RADIAL</td>
</tr>
<tr>
<td>D1, 2</td>
<td>2</td>
<td>200V 1A</td>
<td></td>
<td></td>
<td>Digi</td>
<td>85184-ND</td>
<td>pan</td>
<td>"</td>
</tr>
<tr>
<td>D3, 4</td>
<td>2</td>
<td>1000V 0.2A</td>
<td></td>
<td></td>
<td>Digi</td>
<td>487-3187-ND</td>
<td>avx</td>
<td>RADIAL</td>
</tr>
<tr>
<td>D5, 6</td>
<td>2</td>
<td>5.6V @20</td>
<td>0.5</td>
<td></td>
<td>Digi</td>
<td>1N5232BFSCT-ND</td>
<td>DO-35</td>
<td>"</td>
</tr>
<tr>
<td>D7, 8, 11, 12</td>
<td>4</td>
<td>6.2V @20</td>
<td>0.5</td>
<td></td>
<td>Digi</td>
<td>1N5232BFSCT-ND</td>
<td>DO-35</td>
<td>"</td>
</tr>
<tr>
<td>D9, 10</td>
<td>2</td>
<td>100V 0.2A</td>
<td></td>
<td></td>
<td>Digi</td>
<td>1N915B-ND</td>
<td>DO-35</td>
<td>"</td>
</tr>
<tr>
<td>D13-16</td>
<td>4</td>
<td>600V 1A</td>
<td></td>
<td></td>
<td>Digi</td>
<td>1N905GOS-ND</td>
<td>on</td>
<td>DO-41</td>
</tr>
<tr>
<td>D17</td>
<td>1</td>
<td>REF</td>
<td>0.1</td>
<td></td>
<td>Digi</td>
<td>LM4040AIM3-10.0/</td>
<td>ti</td>
<td>TO-92</td>
</tr>
<tr>
<td>D18</td>
<td>1</td>
<td>5V</td>
<td>.1</td>
<td></td>
<td>Digi</td>
<td>LM4040AI5-5.0-ND</td>
<td>ti</td>
<td>TO-92</td>
</tr>
<tr>
<td>F1</td>
<td>1</td>
<td>0.25A AB</td>
<td>USER SELECTED</td>
<td>DPM</td>
<td>Digi</td>
<td>811-1017-ND</td>
<td>murata</td>
<td>"</td>
</tr>
<tr>
<td>M1</td>
<td>1</td>
<td>0-20V</td>
<td>0.1</td>
<td>DPM</td>
<td>Digi</td>
<td>P2222AT3CT-ND</td>
<td>on</td>
<td>TO-92</td>
</tr>
<tr>
<td>Q1</td>
<td>1</td>
<td>8×75</td>
<td>40V</td>
<td>.825</td>
<td>Digi</td>
<td>PW207ABUS-ND</td>
<td>on</td>
<td>TO-92</td>
</tr>
<tr>
<td>Q2</td>
<td>1</td>
<td>8×100</td>
<td>40V</td>
<td>.825</td>
<td>Digi</td>
<td>PW207ABUS-ND</td>
<td>on</td>
<td>TO-92</td>
</tr>
<tr>
<td>R1</td>
<td>21</td>
<td>22</td>
<td>TRIM</td>
<td>.125</td>
<td>Digi</td>
<td>RNCP1206FTD1R00CT-ND</td>
<td>"</td>
<td>AXIAL</td>
</tr>
<tr>
<td>R2</td>
<td>1</td>
<td>10K</td>
<td>5</td>
<td></td>
<td>Digi</td>
<td>RNCP1206FTD1R00CT-ND</td>
<td>"</td>
<td>AXIAL</td>
</tr>
<tr>
<td>R3</td>
<td>1</td>
<td>1M</td>
<td>1</td>
<td></td>
<td>Digi</td>
<td>RNCP1206FTD1R00CT-ND</td>
<td>"</td>
<td>AXIAL</td>
</tr>
<tr>
<td>R4</td>
<td>1</td>
<td>150K</td>
<td>1</td>
<td></td>
<td>Digi</td>
<td>RNCP1206FTD1R00CT-ND</td>
<td>"</td>
<td>AXIAL</td>
</tr>
<tr>
<td>R5</td>
<td>1</td>
<td>100K 25T</td>
<td>TRIM</td>
<td>.125</td>
<td>Digi</td>
<td>RNCP1206FTD1R00CT-ND</td>
<td>"</td>
<td>AXIAL</td>
</tr>
<tr>
<td>R6</td>
<td>4</td>
<td>*1K</td>
<td>0.1</td>
<td>*5</td>
<td>MOSR</td>
<td>71-PFT561K0000BYEB vishayAXIAL</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>R7</td>
<td>1</td>
<td>10K</td>
<td>0.1</td>
<td>*125</td>
<td>MOSR</td>
<td>71-PFT561K0000BYEB vishayAXIAL</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>R8</td>
<td>1</td>
<td>100K</td>
<td>0.1</td>
<td>*125</td>
<td>MOSR</td>
<td>71-PFT561K0000BYEB vishayAXIAL</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>R9</td>
<td>1</td>
<td>1M</td>
<td>0.1</td>
<td>*125</td>
<td>MOSR</td>
<td>71-PFT561K0000BYEB vishayAXIAL</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>R10</td>
<td>1</td>
<td>10M</td>
<td>0.1</td>
<td>*3</td>
<td>MOSR</td>
<td>71-P1206H105MNT</td>
<td>AXIAL</td>
<td>"</td>
</tr>
<tr>
<td>R11</td>
<td>1</td>
<td>1M</td>
<td>0.5</td>
<td>*1.5</td>
<td>MOSR</td>
<td>588-MOX-200001006JE</td>
<td>AXIAL</td>
<td>"</td>
</tr>
<tr>
<td>R12</td>
<td>1</td>
<td>1M</td>
<td>0.5</td>
<td>*1.5</td>
<td>MOSR</td>
<td>588-MOX-200001006JE</td>
<td>AXIAL</td>
<td>"</td>
</tr>
<tr>
<td>R13</td>
<td>1</td>
<td>1M</td>
<td>0.1</td>
<td>*1.5</td>
<td>MOSR</td>
<td>588-MOX-200001006JE</td>
<td>AXIAL</td>
<td>"</td>
</tr>
<tr>
<td>R14</td>
<td>1</td>
<td>1M</td>
<td>0.1</td>
<td>*1.5</td>
<td>MOSR</td>
<td>588-MOX-200001006JE</td>
<td>AXIAL</td>
<td>"</td>
</tr>
<tr>
<td>R15</td>
<td>1</td>
<td>1K</td>
<td>10</td>
<td>*1.5</td>
<td>MOSR</td>
<td>588-MOX-200001006JE</td>
<td>AXIAL</td>
<td>"</td>
</tr>
<tr>
<td>R16, 17</td>
<td>2</td>
<td>1M</td>
<td>0.1</td>
<td>*1.25</td>
<td>MOSR</td>
<td>588-MOX-200001006JE</td>
<td>AXIAL</td>
<td>"</td>
</tr>
<tr>
<td>R18</td>
<td>1</td>
<td>330</td>
<td>1</td>
<td>*1.25</td>
<td>MOSR</td>
<td>588-MOX-200001006JE</td>
<td>AXIAL</td>
<td>"</td>
</tr>
<tr>
<td>R19</td>
<td>1</td>
<td>3.3M</td>
<td>1</td>
<td>*1.25</td>
<td>MOSR</td>
<td>588-MOX-200001006JE</td>
<td>AXIAL</td>
<td>"</td>
</tr>
<tr>
<td>R20</td>
<td>1</td>
<td>10K</td>
<td>5</td>
<td>*1.25</td>
<td>MOSR</td>
<td>588-MOX-200001006JE</td>
<td>AXIAL</td>
<td>"</td>
</tr>
<tr>
<td>R23, 26</td>
<td>2</td>
<td>390</td>
<td>1</td>
<td>*1.25</td>
<td>MOSR</td>
<td>588-MOX-200001006JE</td>
<td>AXIAL</td>
<td>"</td>
</tr>
<tr>
<td>R24, 25</td>
<td>2</td>
<td>15K</td>
<td>1</td>
<td>*1.25</td>
<td>MOSR</td>
<td>588-MOX-200001006JE</td>
<td>AXIAL</td>
<td>"</td>
</tr>
<tr>
<td>R27</td>
<td>1</td>
<td>8.2K</td>
<td>1</td>
<td>*1.25</td>
<td>MOSR</td>
<td>588-MOX-200001006JE</td>
<td>AXIAL</td>
<td>"</td>
</tr>
<tr>
<td>R28</td>
<td>1</td>
<td>10K</td>
<td>1</td>
<td>*1.25</td>
<td>MOSR</td>
<td>588-MOX-200001006JE</td>
<td>AXIAL</td>
<td>"</td>
</tr>
<tr>
<td>R29</td>
<td>1</td>
<td>50K</td>
<td>5</td>
<td>*1.25</td>
<td>MOSR</td>
<td>588-MOX-200001006JE</td>
<td>AXIAL</td>
<td>"</td>
</tr>
<tr>
<td>R30</td>
<td>1</td>
<td>47K</td>
<td>1</td>
<td>*1.25</td>
<td>MOSR</td>
<td>588-MOX-200001006JE</td>
<td>AXIAL</td>
<td>"</td>
</tr>
<tr>
<td>R31</td>
<td>1</td>
<td>4.7K</td>
<td>1</td>
<td>*1.25</td>
<td>MOSR</td>
<td>588-MOX-200001006JE</td>
<td>AXIAL</td>
<td>"</td>
</tr>
<tr>
<td>T1</td>
<td>1</td>
<td>24V 0.08A</td>
<td>2</td>
<td>OP AMP</td>
<td>Digi</td>
<td>ADA4638-1ARZ-ND</td>
<td>Bourns</td>
<td>SSOIC</td>
</tr>
</tbody>
</table>

* 4 X 1K 1/8W in series-parallel = 1K 1/2W.
as an example, but the point of this article is to explain how to measure current with the basic current-to-voltage converter. The rest of the circuit can be replaced by what is easiest for the builder to duplicate.

Build just the converter to satisfy yourself that this works as claimed. Work with the output polarity reversed (without the inverter) and one resistor and capacitor at a time to verify the amazing performance. To accurately measure currents of 10 pA and 100 pA full scale, an old Centralab ceramic wafer switch is required. The best presently-available switches (cost reduced) have resistance just above one million megohms and will cause error by lowering the highest-range resistor values. If an old Centralab switch can’t be obtained, make your most sensitive range 1 nA and settle for 1 pA resolution on a 3-1/2 digit DVM.

The inverter/buffer isn’t needed if the output polarity isn’t important and the current converter load is a 1M minimum input resistance DVM. The range switch resistors provided in the parts list are for the builder interested in precision. Less accurate and less expensive ones will still work. ALL soldering, including the attachment of fine wire leads to the ADA4638, must be done with the soldering iron tip, the circuit, and yourself connected to the same ground to prevent damage to the op-amp and circuit components from electrostatic discharge (ESD).

If you build with ranges below 1 nA, include the temperature compensation. The ±1 pA stability over 72° to 82° Fahrenheit improves to better than ±0.2 pA. The capacitors used on the switch must be very low leakage. Use NP0. Connect the critical input and return wiring as the schematic shows or the 10-µV insertion loss can increase by many times. The 10-µV max across the input terminals at 10 mA is mostly from the input terminal brass, 0.001 ohm. If a safe HV probe can be built using Ohmite’s 1000 M, 0.5%, 7.5-KV resistor, the probe and circuit can accurately measure 100-mV full scale to 5,000 volts.

Adjustment

Shield the input from electrostatic effects with aluminum foil connected to the input return. Do not allow the foil to be in contact the red plastic or to short out the input. Apply power and allow at least one-half hour of warm up on the lowest

Figure 2. PC board mask for the meter circuit. Recommended dimensions are exactly 3 inches long and 2.25 inches wide.
range. Adjust the zero for 00.00 V as measured on the 10-volt range of a correctly zeroed DVM connected to DVM OUT. Remove the aluminum foil. On the 10-mA range, connect a metal film 1K resistor across the input terminals. Thermoelectric cautions must be observed at µV level. Use a DVM with microvolt resolution, properly zeroed while BOTH test probes are in contact with the input terminals. Adjust the input offset trimpot for zero µV between the input terminals. To ensure that there has been no interaction, repeat the adjustments to this point. Then, with the 1K removed, on the 10-mA range, apply +10-mA then -10-mA (±5%) from a com-

Photo B. Inside view of the finished meter. The author encourages readers to customize the circuit for their own needs once they understand how use the basic current-to-voltage converter to measure very low current levels.
pletely isolated source such as a 1.5-volt battery in series with a 150-ohm resistor. The voltages between input terminals will both be less than 10 µV with correct adjustment of offset and test DVM zero.

Operation

You will be pleased to find that the zero stability will be better than ±1 pA and should not need adjustment on ranges of 1 nA and up after the initial zeroing. Excellent repeatability and accuracy will be your reward for building with high precision range resistors. The 10-µV insertion loss makes measurement of low or leakage current in low-voltage electronics easier and more accurate than by any other method.

Ultra-high resistance is measured by reading the current through it with 10 volts applied across it, then calculating \(R = \frac{E}{I} \). Example: 10 volts divided by 0.177 nA = 56.5 thousand megohms. The precision and repeatability that is possible when measuring ultra-high resistance should more than compensate for the minor inconvenience of having to calculate \(R = \frac{10}{\text{resistor current}} \). To measure the average current in a circuit that has rapidly varying wide changes in level, a filter cap should be connected across that circuit and the current measured. The circuit should then be disconnected, the cap leakage current measured and then subtracted from the total current.

Conclusion

When you complete this project and begin making the extreme and accurate measurements that are possible, I expect that you will complain that I took too long to publish this.

Figure 4. Parts placement for the top side of the circuit board. Note correct orientation for the ICs.

[Image of circuit board]

Excellent repeatability and accuracy will be your reward for building with high precision range resistors.
In 1970, I was playing with tunnel diode oscillators as very low power RF sources for short-range transmitters and signal generators. The RF power was so low that my trusty Heathkit grid dip oscillator could not sense it in diode mode, where it becomes a simple absorption wavemeter with a vacuum tube diode RF detector to drive the meter. I built an amplified absorption wavemeter with one transistorized gain stage to be able to see the signal and estimate the frequency of those tunnel diode oscillators and have used it ever since. The parts all came from my junkbox. The neatest feature is that it reverts to an unamplified instrument when turned off and becomes much more sensitive when turned on. I was proud of this innovation. Now I update the circuit with modern components for much better performance and less variability.

Background
An absorption wavemeter, as shown in Figure 1 and Photo A, is simply a tuned circuit with no indicator. As the wavemeter tunes through resonance, it causes observable changes in a nearby coupled circuit as it absorbs energy from it. For example, you would notice a change in transmitter plate current when coupling energy away from the tank circuit.

Figure 2 adds a small incandescent lamp to the tuned circuit as an indicator. The lamp can connect across the resonant circuit or via a coupling link. An RF source coupled to the tuned circuit lights the lamp most brightly when the circuit resonates at the frequency of the coupled RF energy. The tuning dial is calibrated to read frequency. Pretty simple, isn’t it?

The absorption wavemeter shown in Figure 3 uses a crystal diode detector and a meter for an indicator. Again, the meter indicates maximum when RF energy couples in at the resonant frequency of the tuned circuit. A milliamp-class meter is superior to the lamp and provides an indication for moderate signal levels, but a sensitive 50-µA meter is preferable to sense small signals.

The 1N34A point-contact crystal diode is a throwback to an earlier age of crystal sets with cat’s whiskers. A fine conical point contacts a block of germanium crystal under spring pressure. Its characteristics are better for low-level RF detection than common rectifying junction silicon diodes.

Add Gain
Figure 4 shows a transistor amplifier to increase the sensitivity of the absorption wavemeter. The circuit is similar to an amplified field strength meter I found in the 1969 RSGB Radio Communication Handbook. Parts values shown reflect the...
original circuit except for the 1N34A. It’s simple and effective and provides an order of magnitude gain over an unamplified absorption wavemeter. Connecting an antenna to an absorption wavemeter adds the functionality of a tunable field strength meter.

Calibration is simple and consists of adjusting the meter to zero with no input signal present. Operation is simple. Couple to an RF signal. At resonance, a small input will peg the meter.

So what’s the problem? Well, this circuit only works with germanium transistors, which were a lot more common 60 years ago. Most old germanium transistors work, some better than others. Some few don’t work at all. Try more than one germanium transistor if you can. Don’t bother to try a silicon transistor. It won’t work.

You can replace the 1N34A crystal diode with a low-offset HP 5082-2835 silicon hot carrier (Schottky) diode, if you have one, but the transistor must be germanium. If I were smarter, I could tell you why. It is likely related to the higher voltage drop across the emitter-base junction in silicon transistors.

Germanium transistors are in production again, but if you want an old one that’s not in a surface mount package, the nice folks at Gateway Electronics, a mile from my Saint Louis QTH, have a stock of 2N404 PNP germanium transistors at low cost.

Higher beta devices yield higher amplification. For an NPN transistor, just reverse the polarity of the diode, meter, and battery. My unit actually uses an NPN transistor, but I show the schematic for PNP because more such devices are available.

Decrease the value of resistor R1 for a milliamp-class meter or a transistor that requires higher collector current before the beta comes up. Increase R1’s value to decrease battery current.

WØPCE 1970 Wavemeter

The amplified wavemeter circuit in Figure 5 works at reduced sensitivity with power off by rearranging the circuit elements with a DPDT switch. This is the instrument I used for decades.
With power on, the circuit is the same as in Figure 4. With power off, the circuit is nearly the same as in Figure 3. How cool is that? The difference is that the potentiometer and resistor are now in parallel with the meter, slightly reducing sensitivity.

The 1970 wavemeter is shown in Photo B for example only, though you should note the desirability of low-inductance connections between the variable capacitor and the socket for the plug-in coils. All inductance should be in the coils if you want to go to high frequencies.

Select a variable capacitor with a large ratio between maximum and minimum capacitance in order to get the widest tuning range with the fewest plug-in coils. Do not remove rotor plates from the variable capacitor to lower the capacitance, as that decreases the maximum-to-minimum ratio.

Mount the variable capacitor and the connector into the case and wire them together with short low inductance leads. If you can’t avoid significant lead length, use a wide flat conductor such as copper tape.

Finally, after the variable capacitor and connector are wired, try winding some coils on low-loss material and see where they resonate. Coil requirements depend on your variable capacitor. I used plastic tubing of a convenient size that fit nicely onto once-abundant RCA phono plugs. You need a signal source of known frequency to calibrate the instrument. Wind the coils so that the tuning ranges overlap somewhat.

“Transistorized Grid Dip Oscillators” and “Tunnel Dippers” were marketed long ago, but were never as good as tube-type grid dip oscillators. If you come across a discarded solid-state dipper, you have the basis for a simple

* For Ge NPN transistor, reverse diode, meter, and battery.

Figure 4. Germanium transistor amplified absorption wavemeter. The transistor improves sensitivity to measure low-level signals.

Figure 5. Schematic of WØPCE’s 1970 amplified absorption wavemeter. It’s still in use today.

Photo B. WØPCE’s 49-year-old wavemeter. It still works, but his newer version is much more sensitive and is more consistent in operation.
conversion. Remove the oscillator circuitry and convert it to an amplified wavemeter.

WØPCE Wavemeter Upgrade

The amplified wavemeter circuit in Figure 6 is an upgrade with much greater sensitivity and consistent performance at the cost of somewhat greater complexity. Half of an operational amplifier — U1a — provides the gain.

Again, the circuit reverts to an ordinary un-amplified instrument when turned off and becomes very sensitive when turned on, even with a milliamp-class meter. If sensitivity is too high or the zero adjustment is too finicky, increase R1 to 30-100kΩ or more. Decrease R1 for greater sensitivity and/or use a more sensitive meter. I used 10kΩ for R1 to achieve extremely high sensitivity, but I suggest starting with 30kΩ.

The op-amp-based circuit operates consistently and eliminates device variability experienced with the germanium transistor-based circuit.

Select a newer operational amplifier that operates with less than 3 volts so a pair of AAA cells can power it. Don’t expect general-purpose op-amps to work with less than 9 volts of supply voltage. Any low bandwidth (low slew rate), low voltage, rail-to-rail op-amp that requires less than a 3-volt supply and low supply current should work fine. My current favorite is the MCP6042 from Microchip Technology. It works down to 1.4 volts and draws less than 1 µA over and above the meter drive current. A sensitive meter keeps current drain low.

The other half of the dual operational amplifier U1b serves to split the supply voltage to generate an in-between ground potential.

Standard ±50% ham tolerance (HI!) is fine for all components, but keep R5 equal to R6.

Conclusion

I was so young in 1970. The circuit I built with a germanium transistor is still useful, but the new circuit has very much higher gain and avoids selection of touchy components.

In editing this article, among other errors, I learned that the circuits in Figure 4 and 5 turn the leaky germanium transistors off rather than on. On retesting, I find the circuits seem more sensitive this way. Sensitivity also improves with a higher voltage supply of 3 volts. I still can’t make the circuit work with silicon transistors.

Figure 6. WØPCE dual op-amp wavemeter brings the circuit into the 21st century with high gain and sensitivity that weren’t available 50 years ago.

WØPCE Technologies

Add the legendary W2IHY 8 Band Equalizer And Noise Gate to your shack and get ready for great audio reports! From smooth rag-chew audio that makes them ask what you’re running... to penetrating DX/Contest audio that gets results, wide-range adjustability is at your command. Noise-Gate reduces background noise for a cleaner, more effective signal. Universal Interface lets you use most any microphone with any radio includingamics. 1-K-Y selector for plug-n-play with popular brand microphones. Switched outputs for 2 radios. Headphone Monitor. RFI protection.

EQplus By W2IHY

Did you turn on an amplifier? Your signal is loud and squeaky-clean. EQplus users hear that report all the time. Compressor/Limiter increases talk power without the distortion and restricted frequency response of ordinary speech processors. Dual Band EQ, Downward Expander for noise reduction, Effects for psychoacoustic magic. LED Bar Graph. Front panel controls. Universal Interface matches most all mics, all radios. 1-K-Y mic selector. Switched outputs for 3 radios. Headphone Monitor. RFI protection. Powerful stand alone system or combine with W2IHY 8-Band EQ for maximum adjustability.

Products purchased from W2IHY include 30 Day Money Back Guarantee and 3 Year Parts/Labor Warranty. Top-rated Product Quality, Technical Support and Customer Service.

845-889-4253
email: julius@w2ihy.com
order online at www.w2ihy.com

W2IHY Technologies Inc.

19 Vanessa Lane
Staatsburg, NY 12580

Awesome Audio Demonstrations
www.w2ihy.com

www.cq-amateur-radio.com February 2019 • CQ • 49
I seem to have a natural inclination to come up with alternative uses for common objects. So a while back, it occurred to me that with the dwindling availability of certain construction components for electronic projects, in particular enclosures and chassis, I should look elsewhere … outside of the electronics websites. That’s when it hit me to consider using inexpensive baking pans.

Baking pans and their deeper cousins, loaf pans, especially the non-stick coated variety, have several advantages.

1. They are typically manufactured from thin steel, making them easy to cut, drill, punch, nibble, etc.
2. The side walls generally slope upward when the pan is inverted. So when a pan sits on a desk, the controls mounted on its side walls will angle upward, to the advantage of the operator.
3. The non-stick coating serves as an attractive and durable finish. Yes, you can still find a mill-finish loaf pan at Walmart for 88 cents, but then you’d probably end up having to paint it yourself. Spend the extra couple of bucks and get one with a non-stick finish. (And do NOT just borrow a pan from your kitchen … you know it’ll be the next pan that’s needed for cooking/baking. –ed)

Project Examples…
For years I have used a regulated variable power supply on the bench that I built from a kit (Elenco K-11). Eventually, though, I grew tired of having to treat it with kid gloves because of its fragile condition, i.e., hanging together by noth-

A Little Help From the Kitchen
BY HOWARD A. GOODMAN, *N4KYW

* email: <howagood@yahoo.com>
ing more than the wires used to connect the components.

With ovenware in mind, I went out and bought a loaf pan
with a nice brown non-stick finish. After figuring out how many
holes to drill and where to drill them, I reassembled the power
supply components inside the loaf pan. The result is shown
in Photos A and B. I even added a voltmeter to the front side-
wall so that the voltage setting could be monitored at all times.

I believe the marriage between electronics and kitchen
utensils speaks positively here. Notice the olive drab col-

Photo B. Underside of the power supply.

Photo C. Top side of packaged “Poor Ham’s Variac” vari-
able voltage power supply.

Young Ladies’ Radio League, Inc. Since 1939

For 75 years the Young Ladies’
Radio League, Inc. (YLRL) has
helped women find their voice
in Amateur Radio with members
of all ages and interests.

The YLRL sponsors a number
of certificates for both YLs and OMs. Members
can earn special YL Certificates.

YL-Harmonics is our bi-monthly publication
highlighting what women are doing in Amateur
Radio.

YLRL gives out scholarships to YLs each year.
For more information on the YLRL, the current
dues amounts, weekly YL Net locations or how to
join please go to our website at www.ylrl.org
or contact the Publicity Chairwoman, Cheryl
Muhr, NØWBV at n0wbv@earthlink.net. All Officer
information is also listed both on the website and
in each edition of the magazine and you may
contact any Officer as well.

With thanks to the OMs who
encourage and support us.

Visit us at www.ylrl.org
ored knob toward the left side of Photo A. That knob is all that remains of a Knight Kit T-50 CW transmitter I purchased from Allied Radio after earning my Novice ticket nearly 60 years ago. I was so pleased with the results of my power-supply packaging project that I began to search for others that would benefit from being housed in a permanent dwelling. I didn’t have to look far.

Variable Power Supply

Photos C and D illustrate my adaptation of a “Poor Ham’s Variac,” a rather simple and inexpensive substitute for a weighty, pricey Variac®, a brand name for a variable voltage power supply. These supplies are often used to restore (reform) vintage electronics containing electrolytic capacitors that haven’t had high voltage applied for decades. They accomplish this by gradually ramping up the supply voltage, allowing the electrolytics time to “reacclimate,” until the voltage reaches 110.

My version accomplishes the same thing, except that it uses a set of incandescent light bulbs placed in series with the load. To increase the voltage supplying the load, the incandescent bulb is simply swapped out for one having a higher wattage rating (i.e., lower resistance).

Finally, my current project (still in process) is a regenerative receiver being assembled from a kit that did not include an enclosure. Instead of using a wall transformer, I may end up building a 12-volt DC power supply or battery pack into the leftover space to the right of the circuit board. (*Photos E and F*)

So, when it comes to finding suitable enclosures for your electronics projects, whether kit or homebrew, you may not need to look any further than your kitchen.
The NEW Shortwave Propagation Handbook
by W3ASK, N4XX & K6KU

This authoritative book on shortwave propagation is your source for easy-to-understand information on sunspot activity, propagation predictions, unusual propagation effects and do-it-yourself forecasting tips.

6 X 9 Paperback $24.95 $23.00
CD Version $18.95 $17.00
Buy both for only $36.95 $35.00

The Quad Antenna
by Bob Haviland, W4MB

Comprehensive guide to the construction, design and performance of Quad Antennas. General Concepts, Circular-Loop & Arrays, Rectangular & Square Loops, Multi-Element Quads and more!

6 X 9 Paperback $24.95 $23.00
CD Version $18.95 $17.00
Buy both for only $36.95 $35.00

Understanding, Building & Using Baluns & Ununs
by Jerry Sevick, W2FMI

The successor to the popular and authoritative Baluns and Ununs. Great deal of new tutorial material, and designs not in previous book, with crystal clear explanations of how and why they work.

6 X 9 Paperback $24.95 $23.00
CD Version $18.95 $17.00
Buy both for only $36.95 $35.00

Sloper Antennas
by Juergen A. Weigel, OE5CWL

Single- and Multi-Element Directive Antennas for the Low Bands

With calculations and practical experience, this book shows which basic concepts have to be considered for sloper antennas for the low bands.

6 X 9 Paperback $24.95 $23.00
CD Version $18.95 $17.00
Buy both for only $36.95 $35.00

Reflections III
by Walt Maxwell, W2DU

All the info in Reflections I and II and more! This completely revised and updated, 424-page 3rd edition is a must-have!

8.5 X 11 Paperback $39.95 $37.00
CD Version $29.95 $27.00
Buy both for only $59.95 $57.00

W6SAI HF Antenna Handbook
by Bill Orr, W6SAI

W6SAI was known for his easy-to-understand writing style. In keeping with this tradition, this book is a thoroughly readable text for any antenna enthusiast, jam-packed with dozens of inexpensive, practical antenna projects that work!

8.5 X 11 Paperback $19.95 $18.00
CD Version $14.95 $13.00
Buy both for only $29.95 $27.00

Shipping & Handling:
U.S. - add $7 for the first item, $3.50 for the second and $2 for each additional. All Other Countries-$25 for first item, $10 for second and $5 for each additional.

Call 1-800-853-9797 or FAX your order to 516-681-2926
You can also order on our web site:
http://store.cq-amateur-radio.com
Radioteletype came of age in the 1950s, championed by local groups of RTTY enthusiasts as well as CQ magazine, the first ham magazine with a RTTY column. The mode remains popular today, and advances in technology even make it portable.

Southern California RTTY History

... and its Continued Popularity Today

BY PAUL SIGNORELLI,* WØRW

When I operated RTTY in the 1950s, all the received RTTY text looked like this. This is considered “shouting” in today’s netiquette rules but back then all you had was Baudot upper case text.

Radioteletype, better known as RTTY, was very popular back in the 1950s and, at the July 1958 meeting of the Southern California Radio Teletype Society (SCARTS), some 78 members and their wives spent the afternoon and evening at a swimming pool party held at the Arcadia home of Merrill Swan, W6AEE, better known in the area as Mr. Teletype. One teletype expert, Art Addaway, tore down a Model 15 machine and showed us how to adjust it, oil the clutch felts with a hypodermic needle and put it back together. All of the details were published in the popular RTTY, Inc., News of Amateur RTTY Bulletin for August 1958. These old RTTY bulletins were copied onto a CD ROM and put on the web at one point, but I don’t know where they are now. (Several volumes are posted on archive.com – ed)

Due to the efforts of W6AEE of The RTTY Society of Southern California and publisher of RTTY, and Wayne Green, W2NSD, then RTTY editor of CQ magazine, amateur radio operators successfully petitioned the FFC to amend Part 12 of the regulations, which was effective on February 20, 1953, permitting FSK (frequency-shift keying) in the non-voice parts of the 80-, 40-, and 20-meter bands. ASCII format at 300 baud was approved in 1980 and the requirement for CW identification of RTTY transmissions was dropped in 1983.

Merrill, W6AEE, and Bruce, ZL1WB, are on the cover of RTTY Bulletin for October 1958. The RTTY Bulletin started in 1953 and the history was published in November 1958 edition. Merrill even gave Bruce a Model 26 to take back to New Zealand. WØBP and ZL1WB made the first USA-to-New Zealand RTTY contact in 1956.

There was a similar RTTY group up north in San Francisco, The NCARTS, which had similarly large groups attend its annual meetings.

In addition, ARRL conventions always drew a lot of RTTY ops. I was at the RTTY meeting at the Chicago ARRL Convention in 1957 and got to meet all the RTTY pioneers: “Beep” Phelps, WØBP; Phil, W2JAV; and Bob Weitbrecht, W6NRM/6 ex-W9TCJ. A picture of me at the convention was published in the RTTY column of CQ magazine in November 1957, p. 198. (Photo A). W6UJX and I also met many other RTTY ops at the 1958 ARRL convention in Washington D.C.

I had a Model 26 Teletype machine and then upgraded to a Model 15. Back then the machines were sold to hams for about $100 with a restriction that they were for amateur use.

Southern California RTTY History

* email: <w0rw1@msn.com>
only. My Terminal Unit (TU) was a W2PAT/W2JAV design. It had cross-coupled neon bulb triggers for end-of-mark and end-of-space pulses. It was a system used to regenerate a missing pulse in case of QSB. I used a Heathkit DX-100 keyed by a VF-1 that had a 6AL5 shifter diode for 850 Hz shift. I used to copy news items from the Associated Press shortwave broadcasts in the morning and take the news to high school.

At Christmastime, you could find RTTY artwork on VHF where you could get perfect copy. K7TTY has them online at <https://tinyurl.com/yajj6q72>. They were predecessors to ASCII art that is shown at <https://tinyurl.com/ybnpmog2>.

Cecil, W6ZBV, published a PSK RTTY system in the July 1958 *RTTY Bulletin*. He was way ahead of his time. Bob Weitbrecht was deaf and invented the TTY (telephone teletype) for the hearing-impaired, together with the acoustical coupler for landline modems. He worked at Yerkes Observatory and passed away in 1983. Bob’s picture appears on the cover of the book, *A Phone of Our Own — The Deaf Insurrection Against Ma Bell*, by Harry Lang.

Fast-Forward...

Today, I was out operating RTTY pedestrian mobile (without a 100-pound Model 15 Teletype machine ... I don’t have a Teletype machine anymore), by using the battery-operated NUE-PSK Modem3 without a computer or keyboard (*Photo B*). It has a 4-line LCD display and a graphic spectrum display plus transmit and received text in upper and lower case. I mounted a single lever key on the side to input data into it (*Photo C*). When I am transmitting on RTTY, I am really sending 20 wpm CW into the modem and it converts the CW to ASCII, then to Baudot for RTTY. The NUE modem allows me to “VFO” around the band even though I am using a fixed-frequency radio (PRC319). I also have a modem with a portable keyboard (*Photo D*).

Operating RTTY afoot isn’t very difficult ... I just have to watch out for gopher holes and snakes.

Notes

1. The Baudot code doesn’t provide for lower case letters. A comprehensive history of the Baudot code can be found at <https://tinyurl.com/92c68cx>
2. More detailed global RTTY history is at <https://tinyurl.com/azhbfaa>
3. See <www.nue-psk.com>
Last month, and on several occasions in the past, I have written about optical communications as it is of particular interest to me and I believe it is fertile ground for amateur experimentation. I work in fiber-optic transmission systems of all sorts but I am not talking about "wire-type communications" here; I am talking about free space applications — akin to radio. As you might realize, this is usually a line-of-sight mode since almost anything between a transmitter and receiver can block an optical signal, similar to UHF and microwave transmissions. This month, I would like to present some ideas on this subject as "food for thought" to the experimenters in our midst.

Producing a High-Power Optical "Signal"

First, let me give you an idea of how to produce a high-power optical transmitter without an expensive and elaborate laser modulation system. Figure 1 is a diagram of the system. The source is a 1,000-watt projection lamp of the type used in older movie and slide projectors. These are still available and, if you are lucky, you may be able to get an entire old projector that will provide lenses, etc. The output of the projection lamp is then applied to a lens assembly (like the one in the projector) to produce a powerful continuous beam of light. This beam is focused on a mirror cemented to the voice coil of a speaker. The speaker in turn is connected to an audio amplifier. Now, when one talks into the microphone, the speaker vibrates. This causes the mirror to also vibrate and the reflected beam of light moves in step with the audio-produced vibration. The moving beam of light is now passed through a mechanical slit, arranged so that as the beam vibrates (moves), the slit cuts off more or less of the light. This results in an amplitude-modulated light beam that is then applied to another lens assembly which "straightens" everything out and produces a parallel beam. The arrangement of the lenses, choice of speaker, and position of the slot determine just how much of the light is controlled and thus the degree of modulation of the output beam. Color filters can be inserted anywhere in the path of the beam to produce "tuned" outputs. Students of history will note that this scheme is very similar in operation to Alexander Bell's photo-phone.

A receiver can be quite simple, as shown in Figure 2. Here, a very simple lens is used to focus the incoming beam of light onto a photocell. This can be anything from a simple solar cell to a more elaborate photodiode, etc. The output from the photodiode is then applied to an audio amplifier and then to a pair of earphones or speaker as desired. The details given for this sort of system are really just a simple starting point. One can make this as elabo-
rate as one wishes, but for simple experimentation, it is hard to beat. More elaborate approaches have been given in previous columns for those interested.

An Omnidirectional Light Beam

Once you have a simple operating system, you might realize that this is really a directional system, but there is a simple way to make it omnidirectional. Figure 3 shows a very simple device with a hexagonal (six sided) glass crystal turned by a motor. The crystal is from a chandelier and you can probably find something suitable from a large lighting store that does lamp repairs. The motor is one that can turn the crystal quickly enough to allow speech to be transmitted without too much background interruption. You will obviously have to experiment with the motor speed, the frequency response of the audio and the entire mechanical arrangement but again, this is just a suggestion and the final result is up to your imagination.

What Color is Your Signal?

By using various color filters, as I mentioned, you can choose the color of the transmitted light and a similar filter can be used over the photodiode receiver to provide some degree of “tuning.” A store that deals in stained glass supplies can help here.

In conclusion, I wrote this column to not necessarily give you a project but to show how, with some unique out-of-the-box thinking, you can come up with all sorts of ideas. Some will be crazy and some, with a bit of effort, can become useful. These are related to amateur radio in that it is a way of communicating in a medium that is not too common but, in one form or another, can easily become a method used in the future. It is, after all, used in “wired” fiber optic transmission systems. The final result is, of course, up to you.

– 73, Irwin, WA2NDM

Figure 3. A way to produce an omni-directional light beam.
THE LISTENING POST
BY RICH MOSESON,* W2VU

A Visit to the Medium Waves

A combination of a news item, Gerry’s inability to do this month’s column due to some personal issues, and part of my January editorial prompted me to focus this month’s “Listening Post” on a range of frequencies that is frequently overlooked today, despite the fact that it’s where so many of us (myself included) got hooked on radio and DXing … the AM broadcast band.

News item first: As of the end of 2018, two medium wave broadcasters in Belgium went off the air: Groot Nieuws Radio on 1008 kHz and French-speaking station RTBF, which previously broadcast on both 621 and 1125 kHz. This, according to Ydun Ritz on his excellent “Ydun’s Medium Wave Info” site <https://mediumwave.info>. Ydun also reports that RTBF is continuing its broadcasts on FM, DAB+, and the internet. If you’re interested in MW listening, I recommend that you check out Ydun’s site. While it’s focused mostly on Europe, he does have some North American news and I’m not aware of a similar resource on this side of the Atlantic.

You might have noticed that the frequencies of these stations seem unusual for those of us in the U.S. and Canada, where AM broadcast stations have — for nearly a century — been spaced 10 kHz apart on the radio dial. The rest of the world, though, uses 9-kHz separation. This accomplishes a few things: 1) You can squeeze about a dozen more station allocations into the AM band with 9-kHz spacing than with 10; 2) Shifting off of the North American 10-kHz pattern reduces interference from high-powered U.S. and Canadian broadcasters when the AM band is open, and 3) the flip side of that, listeners in North America have a somewhat better chance of hearing real DX on the broadcast band if the distant stations have no immediate competition from “local” stations.

This is an ideal time to give a try (or return) to AM BCB DXing — winter at the bottom of the sunspot cycle. Get yourself a radio that can actually be tuned (as opposed to push buttons for pre-programmed memories), hook up a nice long wire antenna and tune in between the domestic frequencies. Of course, there’s plenty to listen for domestically as well. So keep that AM radio handy!

Leading Logs

We thank Mark Taylor of Madison, Wisconsin for compiling this month’s Leading Logs in Gerry’s absence. We hope Gerry will be back in this space next month. All frequencies are listed in kilohertz and all times are UTC. Meanwhile, here’s what you’ve been hearing…

ANGOLA—Rádio Nacional de Angola, Mulenvos, 4949.75, 0210-0316, a nice program of local vocals and instrumental selections hosted by a woman announcer with Portuguese language announcements. The woman announcer spoke briefly at 0256 followed by instrumental music. Time pipes and the station ID by the woman were followed by male and female announcers with the news. Poor signal. (D’Angelo-PA/FCDX)

ASCENSION ISLANDS—Askhab Mufiha, 9530, 2202-2215*, woman and man alternating in listed Pukar language. A man gave station ID at 2206 before instrumental music. Closing program announcements at 2214 followed by instrumental music prior to carrier being terminated. Fair to good. (D’Angelo-PA/FCDX)

AUSTRALIA—Reach Beyond Australia, possibly from Kununurra, 9740, 1413, going from Bhopuri to Meitei. Man with distinctive chant, woman announcer with ID and two street addresses in India, theme like music, second woman announcer (presumed Meitei) with ID, program schedule (several mentions of “meter band”) into South Asian music. Poor-fair. (Wayne, Indiana)

BANGLADESH—Bangladesh Betar, 4750, 1218. Happy to hear this one today from 1218 tune in, mainly woman talking with instrumental bursts of music. Fair signal but nasty swishing QRN, Hanging in there past 1230 now and may switch to English soon, according to the Fergie lists. (Perry-IL)

BOLIVIA—Emisora Pio XII, 5952.4, 0204-0232*, lively program of local vocal selections. A male announcer with occasional Spanish talk. Series of announcements just prior to closedown routine by male announcer accompanied by familiar Colonel Bogey March. Fair signal. (D’Angelo-PA/FCDX)

Emisoria Pio XII, 5952.50, 0035, was coming in nicely just now, only a slight het from WRMJ 5950 but notchable and nice and mellow clear in USB ECSS. LA pop music at tune in 0035 then female announced ID at 0040 and into sports program. Male announcer with excited presentation style, bursts of music in between items of sport news. 0044 carrier was suddenly cut, not sure if tech glitch or if they closed down the transmitter early, well ahead of the MW which usually runs to a 0230 shutdown after Col. Bogey March. (Perry-IL)

Emisoria Pio XII, possibly from Siglo Viente, 5952.5, 0039, in Spanish. Woman talking at length. Fair. (Perry-IL)

BRAZIL—Radio Educaçao Rural, possibly from Tefé, 4925, 0225-0230, mellow ballad, two male announcers, announce ment or ad, brief mellow ballad, female than male announcers, brief song, 0230 off. I did not hear an ID before sign off. (Taylor-WI)

BRAZIL—Radio Aparecida, Aparecida, 6135.2, 0036, in Portuguese. Mellow ballad. Fair. (Taylor-WI)

Emisoria Pio XII, possibly from Siglo Viente, 5952.5, 0039, in Spanish. Woman talking at length. Fair. (Taylor-WI)

BRUNEI—Voz Missionaria, possibly from Cambroui, 5939.8, 0036, in Portutuese. Mellow ballad. Fair. (Taylor-WI)

Tunisia—Radio Aps, Tunis, 5939.8, 0045, in French. Mellow ballad. Fair. (Taylor-WI)

One of Editor W2VU’s first broadcast band DXing QSLs in 1970 came from Midwest powerhouse WOWO in Fort Wayne, Indiana.
along with other announcements. Good signal. (D’Angelo-PA/FCDX)

Radio Aparecida, Aparecida, 9630.4, 2258, in Portuguese. Man and woman announcers, street noise, music, 2300 4 time pips, ID, woman announcement into apparent news. Fair. (Taylor-WI)

Rádio Voz Missionaria, Camboriú, 9664.8, 0126-0200, nice vocal selection by a male singer followed by a series of vocal selections. Male announcer with station ID at 0158 followed by several announcements. Good signal. (D’Angelo-PA/FCDX)

BULGARIA—Overcomer Ministry, Kostinbrod, 11600, 1443, in English. “Brother” Stair with call in information; starting to preach about the “man of sin” from Revelation in the Bible. Fair signal. //WRMI, 9395. (Taylor-WI)

CANADA—Bible Voice possibly via Nauen, Germany, 11900, 1450, in English. Man preaching. Fair. (Taylor-WI)

CHINA—China National Radio 1, Hailar (Nei Menggu), 4750, 1111-1152, male announcer with talk in presumed Mandarin language although much too weak to be sure. Later, a woman began speaking. Group vocals at 1145. (D’Angelo-PA/FCDX)

Voice of the Strait, Fuzhou, 4900, 1135-1153, male announcer talking in Chinese. Seemed 4940 was much poorer. This was poor overall. Next day signal was much improved (34443) with slight CODAR QRM but definitely 4940 which was also improved (35443) with Chinese talks by male and female announcers. (D’Angelo-PA/FCDX)

PBS Nei Menggu, possible from Hot Hot, 7270, 2325, in Mongolian. Male announcer with strong reverb, woman with correspondent report or call in, then announcer continues. Poor. (Taylor-WI)

CBS Nei Menggu, possible from Hot Hot, 9520, 2322, in Mandarin. Male announcer talking at some length. Poor. (Taylor-WI)

CLANDESTINE—Ndrason International, Ascension Islands, 5960, *0500-0532, female announcer with Kanuri language opening station ID and announcements. Mix of music and talks with plenty of station IDs. Very good signal. (D’Angelo-PA/FCDX)

COLOMBIA—La Voz de tu Conciencia, Puerto Lleras, 6010, 0042, in Spanish. Man and woman alternating with items for a while then talking. Listened quite a while and didn’t hear any identifying information for station ID since I haven’t heard Conciencia in some time. Poor-fair. (Taylor-WI)

Another easy catch for an east coast BCB DXer at the time was WBT in Charlotte, North Carolina.
Snagging 5,000-watt WFAA in Dallas/Fort Worth was a bigger challenge for a beginning DXer in New York State.

EGYPT—Radio Cairo on 9,940 heard at 1844 with talks in listed Turkish. Poor with poor modulation. (Brossell-WI)

ENGLAND—KBS World, Woofferton, 3955, 2146-2201*, French language program with talks and some musical interludes. Closedown announcements and instrumental music to close. Fair to good reception. (D’Angelo-PA/FCDX)

BBC World Service, Al Seela, OMAN, 7445, 2351-0000*, Heart and Soul program until 2359 when station ID and several promotional announcements were heard prior to closedown. Fair signal. (D’Angelo-PA/FCDX)

Radio SAMA (IBRA Radio), Woofferton, 9635, 1745, in Arabic. Man speaking with musical bridges of Middle Eastern music. Poor-fair. (Taylor-WI)

BBC-Ascension Relay, 15,400 heard at 1650 with a report on continuing corruption in the government of Zimbabwe. Mostly poor. (Brossell-WI)

BBC-Madagascar Relay, 15,420 heard at 17690, 1307-1322, tuned in to hear a male announcer speaking in listed Amharic language. At 0335 some flute music before another man began speaking. Whistling and HoA vocals commenced at 0337. Poor amid amateur QRM. (D’Angelo-PA/FCDX)

ETHIOPIA—Amhara State Radio, Addis Ababa, 6090, 2025-2101*, male announcer hosting Horn of Africa vocals program. Closedown announcements and station ID at 2058 followed by choral national anthem. Fair. (D’Angelo-PA/FCDX)

Radio Fana, Addis Ababa, 6110, 0436-0451, another terrific program of Horn of Africa vocals hosted by male announcer speaking Amharic. Fair to good. (D’Angelo-PA/FCDX)

FRANCE—KBS World, Issoudun, 5980, 2023-2100*, French language program with a male / female announcing team hosting a program of popular music many of which were sung in English. At 2058 program closed followed by station ID and closedown announcements. Fair. (D’Angelo-PA/FCDX)

Radio Nigeria Kaduna, Issoudun, 7235, 2236-2300, Hausa language program with male announcer alternating with vocal music program. Closed with station ID and orchestra National Anthem. Fair with some amateur radio QRM. (D’Angelo-PA/FCDX)

Radio Nigeria Kaduna, Issoudun, 17690, 1307-1322, tuned in to hear a male announcer speaking in Hausa. Weak signal but in the clear. (D’Angelo-PA/FCDX)

GERMANY—Deutsche Welle-French Relay, 15,350 heard at 1546 with a man speaking in listed Hausa. Poor. (Brossell-WI)

GERMANIA—Deutsche Welle-French Relay, 15,350 heard at 1546 with a man speaking in listed Hausa. Poor. (Brossell-WI)

Voice of the Broad Masses 2 (Dimtsi Hafash), Asmara, 7160, 0330-0407, finally clear of amateur QRM noted with male announcer speaking in listed Amharic language. At 0335 some flute music before another man began speaking. Whistling and HoA vocals commenced at 0337. Poor amid amateur QRM. (D’Angelo-PA/FCDX)

Radio Cairo on 9,940 heard at 1844 with talks in listed Turkish. Poor with poor modulation. (Brossell-WI)

IRELAND—Voice of Islamic Republic of Iran, Sirjan, 6040, 2012-2020. English program with discussion about woman’s rights in Iran and then a talk about John Bolton. Fair. (D’Angelo-PA/FCDX)

JAPAN—Radio Japan, Yamata, 11665, 1520-1601*, Arabic language program with talks, music and recitation prior to closedown. Good signal. (D’Angelo-PA/FCDX)

Radio Kuwait, possibly from Sulaibiyah, 11630, 1520-1601*, Arabic language program with talks, music and recitation prior to closedown. Good signal. (D’Angelo-PA/FCDX)

IRELAND—Voice of Islamic Republic of Iran, Sirjan, 6040, 2012-2020. English program with discussion about woman’s rights in Iran and then a talk about John Bolton. Fair. (D’Angelo-PA/FCDX)

Radio Kuwait, possibly from Sulaibiyah, 11629.8, 1458, in Arabic. Man speaking slowly through top of the hour, 1501 signal drops considerably from fair to poor with Middle Eastern music and the same man continues. No ID audible. Occasional ute giving “machine gun” interference near or on signal. (Taylor-WI)

MADAGASCAR—MWV African Pathways Radio, 13,670 heard at 1836 with a Bible study on Daniel. Fair. (Brossell-WI)

INDIA—AIR Bhopal, 4810, 1239, looks like we’ve got a decent subcontinental opening. Starting to move up the band and there’s Bhopal on 4810 with a fair signal at 1239 check with subcontinental music and het. (Perry-IL)

KUWAIT—Radio Kuwait, Sulaibiyah, 11630, 1520-1601*, Arabic language program with talks, music and recitation prior to closedown. Good signal. (D’Angelo-PA/FCDX)

Radio Kuwait, possibly from Sulaibiyah, 11629.8, 1458, in Arabic. Man speaking slowly through top of the hour, 1501 signal drops considerably from fair to poor with Middle Eastern music and the same man continues. No ID audible. Occasional ute giving “machine gun” interference near or on signal. (Taylor-WI)

NIGERIA—Voice of Nigeria, Ikorodu, 9690, *1800-1832, opening of English service with news and program called 60 Minutes. A lot of discussion about upcoming democratic elections. Fair to good signal. Re-tuned at 1900 but Spain opened

NIGERIA—Voice of Nigeria, Ikorodu, 9690, *1800-1832, opening of English service with news and program called 60 Minutes. A lot of discussion about upcoming democratic elections. Fair to good signal. Re-tuned at 1900 but Spain opened
on the channel blocking Nigeria. (D’Angelo-PA/FCDX)

OPPOSITION—Shiokaze, possibly from Yamata, Japan, 7245, 1358, in Korean. Man talking over mellow music, ID, 1400 off. Poor-fair. (Taylor-WI)

Denge Welat, Issoudun, 9525, 2131-2200°, non-stop Kurdish language talks by a male announcer until group singing at 2156 prior to carrier being terminated at top of the hour. Fair but steadily improving signal. Again at 0348 with male announcer speaking Kurdish. Good signal. (D’Angelo-PA/FCDX)

Dm’tse Radio Erena, possibly from Kostnibrod, Bulgaria, 9720, 1751, in Tigrigna. Male announcer with call in by a man then announcer talks until feed is cut mid sentence at 1800 sign off. Poor-fair. (Taylor-WI)

Denge Welat, possibly from Grigoriopol, Moldova, 11530, 1427, in Kurdish. Very distinctive folk group singing by women. I had to leave the room and when I returned at 1440 there was a male announcer, bumper into a woman talking at some length (maybe a speech). Fair. (Taylor-WI)

Radio Tamazuj, possibly from Talata Vololondry, Madagascar, 11705, 1504, in Sudanese Arabic. Male announcer with distinctive stinger, same announcer, same stinger, second male announcer, another male announcer interviews a woman, stinger, ID into first man. Fair. (Taylor-WI)

Radio Sana’a, possibly from Jeddah, Saudi Arabia, 11860, 1449, in Arabic. Man giving apparent speech. Poor. (Taylor – WI)

Radio Dabanga-South Africa Relay, 15,350 heard at 1541 with talks in listed Sudanese. Poor. (Brossell-WI)

Eye Radio, Santa Maria do Galeria, 15410, 1500-1546, male announcer with English language opening station ID and announcements quickly followed by Arabic. Arabic news followed by English news with many items focused on South Sudan. Poor to fair. (D’Angelo-PA/FCDX)

Pалау—T8WH, Medorn (World Harvest Radio), 9965, 1243-1306, thanks to a tip from Rich Cuff caught some religious vocals until 1259 when a male announcer gave station ID: “This is T8WH, Palau. This is World Harvest Radio … send reception reports to P. O. Box 1, South Bend…” Poor to fair. (D’Angelo-PA/FCDX)

ПЕРУ—Radio Huanta 2000, Huanta, 4747.4, 0002-0023, nice program of OA vocals but poor to fair signal suffered from a lot of CODAR QRM. (D’Angelo-PA/FCDX)

Radio Tarma, Tarma, 4775, 0207-0406, male announcer speaking Spanish and station IDs with plenty of OA music. Series of announcements at 0226. Kept waiting for them to closedown periodically circling back to them but they kept on playing OA music, which was fine by me. Poor to fair with some CODAR QRM. (D’Angelo-PA/FCDX)

ПИРАТ—Radio Boo Boo, 6925 USB, 2150-2221. “30 days in the hole,” “Don’t call us, we’ll call you,” long guitar solo, “Papa was a rolling stone,” 2206 SSTV (Polar bears around a fire “Radio the hole,” “Don’t call us, we’ll call you,” long guitar solo, “Papa QRM. (D’Angelo-PA/FCDX)

Music, which was fine by me. Poor to fair with some CODAR periodically circling back to them but they kept on playing OA of announcements at 0226. Kept waiting for them to closedown of CODAR ARM. (D’Angelo-PA/FCDX)

Poor to fair. (D’Angelo-PA/FCDX)

Program of OA vocals but poor to fair signal suffered from a lot of CODAR reports to P. O. Box 1, South Bend… “ Poor to fair. (D’Angelo-PA/FCDX)

T8WH, Palau. This is World Harvest Radio … send reception reports to P. O. Box 1, South Bend…” Poor to fair. (D’Angelo-PA/FCDX)

SOUTH KOREA—KBS World Radio, possibly from Kimjae, 7215, 2320, in Mandarin. Two male announcers, correspondent report, and back to announcers. Fair. (CNR 1 also listed on this frequency, however this was not any of the many CNR 1 frequencies or jammers). (Taylor-WI)

KBS World Radio, Kimjae, 9805, 2204-2234, male announcer with news bulletin in the Indonesian language. Feature segments after the news at 2208 after a station ID. An English language station ID at 2218 as “KBS World Radio.” Fair. (D’Angelo-PA/FCDX)

KBS World Radio, possibly from Kimjae, 9805, 2022, in Indonesian. End of song, woman starts talking over music then man joins her. Fair. (Taylor-WI)

SRI LANKA—Sri Lanka Broadcasting Corporation, Trincomalee, 7120, 1139-1200*, flute music until time pips at 1145 when switched into Hindi service program with apparent
news until prayer just before close. Poor to fair. Next afternoon, 1906-2000* with program of Somali language talks and some rustic music. Poor. (D'Angelo-PA/FCDX)

SWAZILAND (Eswatini)—Trans World Radio, Mpangeloa Ranch, 3240, 0309-0346*, a long talk by a male announcer in the listed Ndau language. Station ID and closedown announcement at 0345 followed by IS and carrier cut. Fair at tune in but deteriorating rapidly. (D'Angelo-PA/FCDX)

THAILAND—Radio Thailand, Udorn, 5875, 1109-1122, vocal by a female singer followed by a man with closedown in the Vietnamese language. After brief interlude of bells, a man mentions: “That completes our program in Vietnamese.” There was another round of bells prior to an English language announcement: “This is HS9K, Radio Thailand World Service broadcasting from the Public Relations Department in Bangkok.” A male announcer began the Malay language program. Fair signal. (D’Angelo-PA/FCDX)

Radio Thailand, Udorn, 9940, *1228-1300*, open carrier until bells opening English news with national news followed by Bangkok Airways commercial and then global news. Fair to good signal but deteriorating by closedown. (D’Angelo-PA/FCDX)

Radio Thailand, Udorn, 13745, *0000-0043*, opening of the English news program hosted by a male and female announcers with numerous public service announcements and usual array of commercial ads. Although briefly lost signal around 0029 as antenna pattern changed, reception continued afterwards. Poor to fair. (D’Angelo-PA/FCDX)

TURKEY—Voice of Turkey, possibly from Emirler, 11815, 1448, in Turkish. Sports (probably soccer / football). Fair. (Taylor-WI)

Voice of Turkey, Emirler, 12035, 1330-1424, English program with news, Review of the Turkish Press, Turkish music and various features (Turkey My Home, Turkey in a Nutshell, Question of the Month, etc.). Closed with multi-lingo station IDs. Good signal. (D’Angelo-PA/FCDX)

UNITED STATES—Overcomer Ministry (Brother Stair), Kostinbrod, Sofia, Bulgaria, 5900, 2317-2335. Brother Stair inviting phone calls from listeners, talking about shortwave alternating with a male announcer discussing atomic blasts and destruction being planned, etc. Poor to fair but steadily improving. (D’Angelo-PA/FCDX)

TransWorld Radio, Dhabayya, UAE, 7235, 0344-0345*, light instrumental music just prior to carrier being terminated. Fair. (D’Angelo-PA/FCDX)

TWR India, via Gavar, Armenia, 9305, 1403, in Hindi. Program of South Asian music. Poor-fair. 9910, fair. (Taylor-WI)

Adventist World Radio, Trincomalee, Sri Lanka, 9540, 2131-2200*, Mandarin language religious program with very long talks by a male announcer with only one vocal selection noted. Fair. (D’Angelo-PA/FCDX)

Adventist World Radio, Trincomalee, Sri Lanka, 9540, 2144, in Mandarin. Man and woman alternating, 2156 ID and program ends, carrier cut at 2200. Fair. (Taylor-WI)

VOA-UK Relay. Wooferton, 11,610 heard at 1700 with “This is the Voice of America,” followed by two announcers speaking alternately in listed Somali. Fair. (Brossell-WI)

Radio Farda, via Lampertheim, Germany, 11695, 1445, in Farsi. Persian music. Poor-fair. (Taylor-WI)

Adventist World Radio, via Nauen, Germany, 11730, 1446, in Mandarin. Man preaching. Fair. (Taylor-WI)

Adventist World Radio, Kostinbrod, Bulgaria, 11945, 1512, in Tamil, “How great thou art” in Tamil with South Asian accompaniment. Recording stutters occasionally, into a male announcer talking at some length. Fair. (Taylor-WI)

Radio Liberty, Biblis, Germany, 11965, 1454, in Turkman. Man reading apparent news. Poor. (Taylor-WI)

VOA-Botswana Relay, 15,580 heard at 1831 with a report on the wildfires in California. Fair-to-poor. (Brossell-WI)

VATICAN—Vatican Radio, 11,620 heard at 1553 with a conversation between two men in listed Amharic. Poor. (Brossell-WI)

ZAMBIA—Zambia National Broadcasting Corporation (Radio One), Lusaka, 5915, *0246-0314*, familiar fish-eagle IS until commencement of choral national anthem, a male announcer opened program in a local language. Tribal singing until news at 0258. After news returned to music programming. Poor. (D’Angelo-PA/FCDX)

Thanks

Bob Brossell, Pewaukee, WI. Equipment: JRC NR-545 (Godar DXR-1000 antenna); KENWOOD R-2000 (Grove Flex antenna); DRAKE DSR-2 (Long-wire); SONY ICF 6700W; ETON E1; SONY ICF SW77.

Ralph Perry, Wheaton, IL. Equipment: Drake RBB; D’Angelo-PA/FCDX, Amerco & Palomar Preamps, Wellbrook Loop, 350-foot LA BOG, Delta Skyloop.

Mark Taylor, Madison, Wisconsin. Equipment: Perseus, Elad FDM-S2, Airspy HF+, ICOM R75, Tecsun PL 880, and various other portables; 42-meter dipole, 100-foot long wire, and W6LVP loop.

Looking Ahead... Here are some of the articles we’re working on for upcoming issues of CQ.

- Saturating Ground Systems Under Limited-Space Verticals
- A Simple 14-Watt Amplifier for Digital Modes on 630 Meters
- Results: 2018 CQ World Wide RTTY DX Contest
- How I Became a Lunatic (My Intro to EME)
- Building and Using a Lightbulb Antenna

Upcoming Special Issues

June: Take it to the Field
October: Emergency Communications
December: Technology

Do you have a hobby radio story to tell? Something for one of our specials? CQ now covers the entire radio hobby. See our writers’ guidelines on the CQ website at <http://bit.ly/2qBFODU>.
Campaign in Australia to Bring Back Shortwave Radio

When the Australian Broadcasting Corporation ended its shortwave services in January 2017, many residents became upset because, in several remote communities and in the Northern Territory, the broadcasts were a lifeline to civilization. Now, politicians are getting involved.

A Labor Government under Opposition Leader, Bill Shorten, in a bid to win the 2019 election, has vowed to provide the required $2 million in funds to bring services back.

Senator Nigel Scullion, minister for indigenous affairs, acknowledged the vital necessity of shortwave radio, particularly during cyclones, floods, and other emergencies. He was quoted on radioinfo.com as saying: “This is a really poor decision by the ABC Board which is supposed to ensure the broadcaster provides services, such as the shortwave radio service, not provided by other organizations.”

In a recent report from Amateur Radio Newsline, Chris Nott, president of the NT Cattlemen’s Association, was reported to mention that HF shortwave radio transmitters are a necessity in the bush where mobile and data coverage doesn’t exist for FM and AM radio.

WIA Seeking to Take Over Some ACMA Duties

The Australian Communications and Media Authority (ACMA) released a consultation paper in June seeking an approved body to take over some of its duties by providing training, conducting examinations, and issuing certificates of proficiency as delegated under the Radiocommunications Act of 1992. The current arrangement expires early this year.

The Wireless Institute of Australia (WIA) recently formed the WIA Education Group to work to provide a response that is in the best interests of the amateur radio community, allowing the most up-to-date and flexible delivery options for future exams and callsign management.

So far, the group has come up with ideas to reduce barriers to entry with cost reduction, immediate delivery and quicker processing times, as well as automating the process to ensure a smooth and quicker entry into the hobby. As the selection process grows closer, the WIA Education Group hopes to be chosen for this task.

In addition, the ACMA will be seeking additional Registered Training Organizations (RTOs) to provide training, conduct examinations, and issue statements of completion consistent with an established syllabus. The requirement to be an RTO is intended to ensure that certain standards of organizational governance are met.

ICASA also confirmed that Communications Regulators Association of Southern Africa (CRASA) had accepted the proposal to join the CEPT TR61-01 scheme which allows licensed radio amateurs to operate in member countries for a period of up to three months without the need to apply for a license. The final process to ensure that all administrations have communicated this through their structures may take some time.

Turkey Gets Two New Allocations

Turkey’s telecom regulator, BTK, introduced two new amateur radio frequency allocations in a government gazette notice dated November 29, 2018 — the new WRC-15 60-meter secondary allocation of 5351.5-5366.5 kHz with a power limit of 15 watts EIRP, and a 6-meter allocation of 50-52 MHz, with a power limit of 75 watts. All modes are allowed on both bands.

Ofcom Still Issuing 1X2 Callsigns

Following a Freedom of Information request to UK telecoms regulator Ofcom to find out how many amateur radio 1x2 callsigns have been issued recently, Ofcom responded that from August 2017 to October 18, 2018, there were 48 of the 1x2 format callsigns (for example, G2TV, MSAB) either issued or re-issued.

In Closing

As I’m putting this column together this month, we are in a season between major holidays. You’ll be reading this in February, but I’m submitting it in December. Not much is happening that I can see, which, of course, is good news if we’re referring to natural disasters. A few fires and floods still occurring with hams helping as always, but no new news was sent my way. Ham radios and accessories will be given as gifts this holiday season, so maybe there will be some success stories to publish in the “new year.” I’d appreciate if you tell us all about it — contact <aa6ts@cq-amateur-radio.com>, and don’t forget to send photos.

*17986 Highway 94, Dulzura, CA 91917
Email: <aa6ts@cq-amateur-radio.com>
One of the best parts of my job as EmComm editor for CQ magazine is receiving cards, letters, and emails from readers. Every month, I receive comments about an article I have authored, sometimes complimentary, sometimes to point out where I was wrong. Hey, I’m human and can take the licks. So, before we begin this month’s offering, my direct email is <walt@w4alt.com>, or feel free to pen a card or letter to me at P.O. Box 67, Lewes, DE 19958.

I received a lovely handwritten letter from my new friend Michael, KC5DBD, in Huntsville, Texas. Michael has been a ham since 1992 and enjoys working mobile emergency communications. However, in 2009 he became dependent on crutches and since 2014 has been using a wheelchair, with no hope of walking again. Michael asked if he would be of any use as a “wheelchair mobile” for emergency communications. It took me about two seconds to begin my response.

Michael:
Regarding your idea of “wheelchair mobile,” WHY NOT? What about being a Net Control Operator? If you have the ability to work a radio that can hit a repeater, a reliable net controller is the perfect job for anyone who is not physically able to “beat the streets.” I would suggest you get in touch with your local amateur radio group.

As for training material, I’m including several pages from the ARRL website regarding emergency communication training. I’d also recommend you have your librarian help you find FEMA Independent Study Courses for ICS 100 and 200, plus NIMS 700 and 800. These courses can be viewed and studied online.

You’ve already taken the first step by maintaining your ham license. Using it to further your training in the world of emergency communications is a noble cause. The great thing about our hobby is even with physical disabilities, we can offer our talents and services during times when communications is paramount.

– 73, W4ALT

Michael’s letter got me wondering about others who may be interested in ham radio and emergency communications but who also have physical disabilities. So, I posted a request to the Facebook group RACES - Radio Amateur Civil Emergency Service. The emails began to pour in.

First was from Gene King, KI4LEH:
I am legally disabled, heart issues, mobility issues in which I use a walking cane to get around and physically limited. Of course, I can operate a radio and do so. And I can get set up with my Go-Kit when needed, it just takes me longer to do so.

Now, I volunteer as the RACES Officer for the Sumter County, Florida-Division of Emergency Management. I am able to take care of the administrative tasks of our local RACES, do the planning and implement what we need to. Of course, I have some good folks to whom I can delegate a task and they get it done.

I am the only legally disabled volunteer (here right now). However, the door is open for others who may be interested…

– 73, Gene
Sumter County Emergency Management Radio Amateur Civil Emergency Service (RACES)

Another notable message was received from Ron Mesic. My questions are in italic.

What is your disability? Fibromyalgia. Constant pain and fatigue, occasional pain attacks equivalent to a broken femur, serious challenges getting sleep. Headaches and eye aches and pretty much anything aches. A lot of amplification of everyday aches and pains.

Imagine if someone threaded thin wire through your muscles and joints — it would hurt a little just staying still, but when you start to move it would hurt a lot — and once you got moving it would be pretty manageable — until you stop. Then imagine you could be stabbed randomly with an icpick in the head, but it just lasts a minute. Kind of like Voodoo.

What are your physical or mental limitations? “Fibro Fog” is an occasional reduction in memory and mental acuity associated with pain and fatigue. It cycles.

I can’t rely on stamina and may or may not be able to exert force. I may need to wait until I feel up to it in order to do some work on the house or the car, and I can’t do my own antenna work any longer, but if I wait for the opportunity, I can still do many things.

It’s distressing because it isn’t predictable. You wind up queuing up tasks so that you can jump on it if you feel well enough. I’m pretty fortunate that I have a “desk job.” Not to be indelicate, but there are times where proximity to plumbing is a priority.

How long have you been a ham? Since April 2003

How long have you been disabled? Approximately 20 years — it was a gradual transition, but it was diagnosed around 1998 or so.

How long have you been active in EmComm? Since approximately 2005

What tasks do you perform with the group? Former Deputy EC/RO (Emergency Coordinator / Radio Officer).
I'm interested in jobs handicapped individuals can excel at during an activation. While I imagine it would be difficult to deploy, what tasks are available to handicapped individuals?

Biggest issue with deployment is sleeping arrangements. I can still do many things, but I pay for it later. If there's a flare-up, I may not be able to walk or even drive much. I've spent the night in a Red Cross shelter as part of an exercise — and I survived, but it wasn't pretty. When I go to annual training … I stay in billable quarters or else get a hotel. I've done the barracks, but I can't count on performing well if I don't get some kind of sleep — it's really just trying to stack the deck so I'm more likely to be able to.

I haven't supported the marathon or other "runner safety" call-outs for the last few years because mornings are just too rough. Maybe if the pain cycle swings to a happier place I can do those again. I love doing runner radio support, and have contributed — I think greatly — through providing accurate and detailed after-action reports.

Another critical problem with activation is the fact that disasters are typically accompanied with low pressure weather systems — and I'm sensitive to weather changes.

Is administrative work your specialty?

I'm an engineer, so some of that comes naturally. I've taken many courses including the ICS-300 and ICS-400 FEMA training on managing complex and expanding incidents. If I had to claim a specialty, I'd say training — developing and delivering. Also net control operation, but not so much lately.

Would this include logistics and planning?

I'm a Major and Brigade S3 in the State Defense Force <www.mivdf.org>. I was Hospital AEC, I do Skywarn spotting, tornado siren test reporting, (and) CERT.

I was Deputy EC/RO for Wayne County and was asked to be EC/RO for Macomb County — but that's still in limbo. I'm also engaged with the amazing TeamRubicon organization.

Come to think of it, I was the Planning Officer for SATRA for a little while.

Would your disability permit you to act as Net Control?

Sure. Not a problem at all, as long as there's not a flare-up going on.

In general, I like to sign up for things with a backup person already on deck, just in case. My personality doesn't allow me to "drop the ball." If I commit to something, I'm going to do it — even if I pay for it a lot later.

Here's the deal: Fibromyalgia sucks, but you need to move in spite of pain. If you don't move, you atrophy.

If I went to a gym and pushed a bar back and forth, but hurt for three days afterwards — I don't see the value proposition. So I volunteer. I mentor high school robotics & grade school STEM. I work SAR (search-and-rescue) with the MIVDF (granted, I tend to stay at the command post unless absolutely necessary) and teach SAR to Boy Scouts. I do a lot with CERT, work with the MI-TESA Transportable Emergency Surge Assistance medical facility — in that case I'm the Infrastructure Strike Team Lead, bringing electrical tech and safety expertise to bear for mobile hospital setup!

There's more — basically these things hurt to do — but I see value in doing them. They also come with a start time and a commitment — I can't hit "snooze," so I get out of bed, get dressed, and soldier on.

In 2018 I supported the PACE program at work — students from 60 universities in something like 14 countries converged on my work campus to compete in a personal mobility challenge. That was a week of 18-hour days — it was hard, but so worthwhile. After a week or two, the pain settled back down.

I worked the docks at the FIRST Robotics World Championships — trying to get 400 teams in and out of Cobo Hall in Detroit as quickly as possible — needed medication afterwards, but it had value, it supported purpose, it fed a life of significance.

Not that it will get me a cup of coffee anywhere, but all this volunteering has gotten me a lifetime achievement award from the White House (you may remember President Bush's "Thousand Points of Light" speech.)

I actively try to recruit folks I know in beds or wheelchairs to be more "radio-active" — I've tried to use stationary hams as an information nexus — when folks are in the field, they would be the ones with the phone lists and the maps and the "plan of the day" so they can handle most threat traffic. It's very common for a random person to walk up to anybody with a HViz vest and/or a radio expecting them to know what's going on … commonly "where are the bathrooms," but still — I try to get handicapped folks engaged as the "answer man." Haven't been as successful as I'd hoped, though — frequently get interested conversation but when it comes time to actually do something — crickets. This reminds me — I developed and delivered training specific to "disaster preparedness for persons with disabilities."

My thanks to all who replied to my Facebook request and especially to Gene and Ron for their straightforward, no-holds-barred accounts and realizations there are meaningful opportunities for EmComm for hams with disabilities.

Circling back, Michael asks if he'd just be "in the way" with his "wheelchair mobile." Gene and Ron have provided their own personal accounts of how a disability cannot and should not deter anyone from volunteering their time and improving their radio skills to include emergency communications.

There are several articles written over the years regarding handicapped ham operators. Here are just a couple of them:

<www.hamradioandvision.com> - discusses ham radio for the blind operator.

As you will learn from these articles and testimonials, there are opportunities in emergency communications related to planning, logistics, fixed transmission points, net controllers, administration, and organization well suited for hams with disabilities or other physical challenges.

I urge radio groups and clubs to consider seeking out individuals with disabilities to help bolster their ranks and provide a resource for this untapped talent.

I also urge those with a physical limitation to seek out your local radio club as well as continuing education, such as the free FEMA self-study courses available online <https://tinyurl.com/o64eada> for a comprehensive list of topics and courses. Don't let a disability deter you from helping others!

Keep those cards, letters and emails coming! De W4ALT.
“Over the river and through the woods, a sly little fox he was. So sly that this little fox sought the help of his twin.” That is how Nathan Hardman, N8THN, of Clarksville, Michigan announced that he had deployed a pair of hidden 2-meter transmitters for his friends to find in the next 12 days.

“I hope you all have your fox-hunting skills tuned up for the season,” he continued. “The two foxes are hiding within walking distance of designated parking areas. As this is an extended hunt, you must activate the fox. Key your radio, identify your transmission and press the 1 key. If you are close enough for the fox to hear you, it will begin transmitting a sequence of tones for 30 seconds followed by a Morse ID. When you find one of the foxes, email a picture of it to me and post a note to the Michiganfoxhunter Yahoo group of your success.”

To Nathan and his friends, looking for hidden radio transmitters is a favorite ham radio activity. For 21 years, CQ magazine has sponsored the annual Foxhunting Weekend to encourage hams and prospective hams everywhere to join the fun of using radio direction-finding (RDF) techniques to track down transmitters that their fellow hams have put in unusual places. “Foxhunting” is just one name for this activity when it’s done in vehicles. You also may hear it called T-hunting or bunny hunting.

As always, my 2018 Foxhunting Weekend announcement in CQ brought a batch of hunt announcements and reports about hams having fun. Rules were determined locally so few hunts were alike, except for the on-foot radio-orienteering events that followed standard rules of the International Amateur Radio Union (IARU). As you prepare for Foxhunting Weekend 2019, read on to find out how your fellow hams had a blast doing transmitter hunting all last year.

Rolling to the Hidden T

The most popular form of RDF contesting in the U.S. is the mobile T-hunt on 2 meters. Hunt-when-you-can opportunities like Nathan’s in Michigan and those of the Connecticut Foxhunters, provide a no-stress way to carefully test out RDF equipment and learn how to use it effectively. They are also suitable for those who have work commitments on weekends and other prime foxhunting times. But more popular are mobile hunts in which everyone starts at the same time and a winner is determined, either by time-to-find or by driven mileage.

Foxhunting on the Hudson

A good example is the annual Foxhunting Weekend event of the Peekskill/Cortlandt Amateur Radio Association (PCARA),
based along the Hudson River in New York, about 40 miles north of the Big Apple. This year’s fox team was Jay Albano, N1NRP, and Marlon Henriquez, KC1EHW. They were visitors from Connecticut who had won the 2017 hunt.

At the Beach Shopping Center starting point were three PCARA teams and three visiting teams from Connecticut. Malcolm Pritchard, NM9J, reported, "Jay and Marlon took turns at the microphone, keying up for short periods as they talked, rather than leaving the carrier on continuously. The signal was reasonably strong at the start as alert hunters began swinging their antennas around for the best direction. Maximum signal appeared to be coming from due east."

Everyone took off and in just 39 minutes, Mike Ardovino, N2EAB, was first to find Jay and Marlon. Others arrived later, with the last team coming in at 90 minutes. Then everyone went to a nearby diner. “Notes were compared, routes were recalled and antennas were evaluated,” NM9J wrote. “Here’s to next time when N2EAB will be invited to play the fox.”

California Cruisin’

The PCARA foxhunters began their hunt together, but in some first-to-find hunts, teams can start from wherever they are at the time the fox comes on the air. An example is the monthly hunt of Orange County RACES in southern California. Hunt organizer Ken Bourne, W6HK, seeks out RACES members to take the group’s foxbox, place it in an unusual location and turn it on just after the weekly net on a county-wide repeater. By monitoring the repeater output with a separate receiver, hunters can tell when the fox is on the air, even if they can’t hear it on the input. Some of the hunters compare their signal strengths and bearings on a separate UHF repeater and beacon their travels via APRS, while others prefer to maintain radio silence as they hunt.

Before the OC-RACES hunt, the hider announces the city or area where the fox will be located. Some hunters use this information to try to guess the spot and start close to that location. Others prefer a clear, high location within the boundary for the strongest starting bearing.

Moving Around in Chicago

The Chicago area has first-finder-wins mobile hunts almost every Saturday evening at 8 p.m. Unlike OC-RACES hunts, the Chicago hunters start together from the same location, which is dif—
different each weekend of the month. Mike Brost, WA9FTS, keeps careful records of the results of each hunt so that at the end of the year, the overall best foxhunting team can be honored. You can read stories of these hunts in the monthly Chicagoland Foxhunters Report.1

Starting the Year Right
In addition to hunt-when-you-can opportunities, the Connecticut foxhunting group gathers at Wapping Elementary School in South Windsor in the afternoon of New Year’s Day for a mobile foxhunt on the input of a local repeater, organized by Paul Gibson, N1TUP. His alternative to college football viewing features a tailgate party at the ending point.

No-Wheels Foxhunting
Another kind of radio foxhunting is done without vehicles and takes place in open spaces of all sizes, from big backyards to wilderness forests. Known as foxtailing, radio-orienteering, and Amateur Radio Direction Finding (ARDF), it rewards those who can get their bearings on the run, or at least at a fast walk.

A wide variety of on-foot foxhunts took place in 2018. Simplest were the informal hunts at hamfests and picnics, such as the annual Foxhunting Weekend get-together of the Ski Country ARC. This time it was hosted by Pat Fitzgerald, KV0K, at his home in Glenwood Springs, Colorado. The huntmaster was Brent Williams, KDØWAK.

My experience has been that it’s difficult to get folks to run around seeking transmitters after they have completed a big potluck lunch, but that didn’t seem to affect the intrepid Ski Country transmitter trackers. First, they tested their gear on a practice transmitter in plain sight nearby, then they headed out for the main fox.

Once again in 2018, Rich Patrick, KR7W, was huntmaster for the Radio Club of Tacoma’s spring foxhunt at Fort Nisqually in Point Defiance Park. He wrote that he arrived early for a 2-hour walk in the woods to hide four “bunnies” at locations that were progressively more difficult to find. The farthest was almost a half-mile from the start location, sending its Bugs Bunny cartoon message, “What’s up, Doc? Heh, heh, heh, heh.”

KR7W reported, “Sixteen hunters autographed the sign-in sheet. It’s hard to say who the fastest hunter was, because one third of them did not write their name and call on the self-score sheet and at least three hunters didn’t turn in a score sheet. Twelve of them did fill out and submit the no-name-required comment sheet, indicating that they had a good time, that they didn’t think it was overly difficult, but at the same time they were challenged.”

Hunting at Hamvention®
The annual record for most transmitters in an on-foot foxhunt is almost always achieved by the OH-KY-IN ARC. Their Hamvention® on-foot hunts seem to get bigger every year. With the move to Xenia, the hunt organizers found a new location at James Ranch Gardens, directly across from the Greene County Fairgrounds.

Dick Arnett, WB4SUV, announced, “We will have over 30 low-power transmitters that can be found in any order within a one-hour time limit. Each transmitter has a code number attached that must be recorded to get credit for finding the transmitter. Some of them are disguised to match the surroundings and some are easy finds. All participants will get a sheet with the transmitter frequencies before starting.”

Unfortunately, weather nearly spoiled this event as Bob Frey, WA6EZV reported: “On and off rain the entire day caused not just an early exodus from the convention for many on Saturday, but it also kept away several of the fox hunters as threatening storms and lightning were projected to hit near the time of the hunt. This forced us to limit the hunt to 30 minutes, not nearly enough time to find all 33 hidden transmitters. The seven teams that decided to hunt had a good time and we finished just before the rain. Matt Sanderson, KC9SEM, was declared the winner with 14 finds.”

Antennas in the Park
There was no rain to spoil the Fullerton Radio Club’s annual Antennas in the Park session. However, the temperature topped out at 94° as everyone gathered in Hillcrest Park for foxhunting, food, and radio fun. It was pleasant inside the Izaak Walton cabin, where several newcomers built tape-measure Yagis. In the 40-acre surroundings were three easy 2-meter transmitters for training and antenna testing, plus a five-transmitter ARDF short course.

Five of the Hillcrest participants had so much fun that they traveled to San Diego the next weekend to be among the 28 who took part in the annual on-foot foxhunt of the San Diego Transmitter Hunters. This year’s location was Vacation Isle Park, a hill-free grassy site in the middle of Mission Bay. Joe Corones, N6SZO, and Joe Loughlin, KE6PHB, set out a five-transmitter, 2-meter ARDF course. While the hunters were tracking the foxes, they got the grill going for a post-hunt barbecue.

Champions-in-Training
ARDF sessions like those in Fullerton and San Diego are great training for
USA’s annual ARDF Championships. The 2018 championships took place near Truckee, California in June.

Plans are now under way for the 2019 USA ARDF Championships, which will be combined with the championships of IARU Region 2 (North and South America). Backwoods Orienteering Klub is organizing these competitions, which will take place near Raleigh, North Carolina from July 28 through August 4. Anyone who can safely navigate the woods with a map and RDF equipment is welcome to go for the gold. My next “Homing In” column will have much more information about this full week of fox-hunting fun in the Tar Heel State.

Getting Scouts Involved

This year’s reports show that young persons participated at almost every one of the on-foot foxhunts. Foxhunting teaches useful radio skills and is great exercise. No ham radio or driver’s license is needed to receive and follow the fox signals. That’s why Scouting’s Radio Merit Badge syllabus now includes an option for ARDF activities.

The annual Scout Jamboree-on-the-Air (JOTA) on the third weekend of October is an ideal opportunity to introduce fox-hunting to Scouts in your town.

For the fifth year, campers at the Cabrillo Youth Center in San Pedro, California, were offered a JOTA fox-hunting experience. I put out eight 2-meter mini-transmitters around the 12-acre site for the Scouts to find with help from Tom Gaccione, WB2LRH, and Bob Houghton, AD6QF. There were also some transmitters on the 80-meter band, set by Marvin Johnston, KE6HTS.

The San Diego transmitter hunters provided foxhunting for JOTA at Camp Balboa, which is the northwest corner of San Diego’s famous 1,200-acre urban park. Five mini-transmitters were hidden in the campgrounds and VK3YNG “blue boxes” were provided to the Scouts for RDF. According to Joe Corones, N6SZO, “We elected to use the audio S-meter mode without headphones so that all of the Scouts in a hunting group could hear the tone pitch change to indicate the bearing.”

N6SZO continued, “Each fox transmitter had a piece of colored tape on it so that when the Scouts returned, they could tell us what color of tape was on the fox they found so we could verify that they found the correct one. This was in response to last year when several Scouts saw others finding a fox and when their turn came, they just went to where they saw the others and assumed that what they saw was the one that they were looking for.”

JOTA isn’t the only time when Scouts can experience foxhunting. In Ventura County, California, Doug Dubrall, WA6RJN, provided hidden transmitter hunting at the Thousand Oaks Boy Scout Camporee in April. The emphasis at this event was competition of all types, so Doug put together a “secret transmitter hunt” to get the Scouts excited.

An October “Scout-O” orienteering event in Cincinnati gave over 70 Scouts the opportunity to try ARDF. Members

Scot Barth, KA6UDZ, gets his first bearings at the ARDF session in Vacation Island Park in San Diego. A month later, he was a competitor at the USA ARDF Championships. (Photo by Joe Moell, K0OV)

Glen Christensen, AI6RR, helps a pair of Scouts find a hidden transmitter during JOTA 2018 at Camp Balboa in San Diego. (Photo by Joe Corones, N6SZO)
of the OH-KY-IN ARC built over a dozen measuring-tape Yagis to use with VK3YNG “blue boxes” so that all participants would be using the same type of equipment. “Each receiver was programmed for two of 15 low-power transmitters that were set out,” wrote Bob Frey, WA6EZV. “Scouts worked in teams of two with the first Scout using the antenna to find a transmitter. Then they switched off to locate the second one.”

Next Foxhunting Weekend — May 11-12, 2019
Mobile or on-foot, one transmitter or many, a radio foxhunt is sure to stir up activity in your ham club. Now is the time to plan for this year’s CQ Worldwide Foxhunting Weekend, which will be May 11-12. CQ doesn’t impose any rules or offer any awards for Foxhunting Weekend. That’s up to you and the hams in your hometown. Your hunt can be for mobiles or all on foot. Use the international rules or make up your own.

If foxhunting is new to your area or you want to get more of the locals to join your foxhunting group, consider a “Tune-up In The Park” like the one in Byron Center, Michigan last April. Sponsoring groups were the Lowell, Allegan, Grand Rapids and Holland radio clubs. According to Tom Bosscher, K8TB, the day started with five micro-transmitters in the park for leisurely learning and equipment checking. Seasoned foxhunters were on hand to help with equipment and RDF techniques. Then at noon, a fox transmitter went on the air less than eight miles from the park for the mobile hunters.

For many clubs, Foxhunting Weekend kicks off a season of regular transmitter hunts. For others, it’s a special once-a-year event, like Field Day. Since the primary objective is lots of hunt participation, we don’t insist that your event be on that weekend. Any time in the spring is fine with us!

Some hams prefer the formalities of carefully crafted boundaries, specifications for signal parameters, time limits, and so forth. Others are content just to have one or more signals to hunt. No need for any regulations, they say. Talk it up on the local repeater and social media to find out what your friends have in mind.

Foxhunting teaches an important skill — the ability to find the source of signals from afar. RDF is useful for public service and volunteer enforcement. It can even save lives. Most of all, it’s fun. Give it a try, but make sure your group has safe fun. See to it that no one can be injured by your hidden transmitter or by trying to get to them.

Don’t let the excitement of the hunt make you an unsafe runner or driver. Please ensure that all transmitting and receiving antennas are eye-safe. Always be mindful of your own physical limitations and never take chances behind the wheel or in the forest.

Afterward, write up the results and send them to me. The list of information in a complete CQ Foxhunting Weekend report is posted on my website. In addition to the details of date, location, hiders and winners, CQ’s readers also want to know what was unique about your hunt and what lessons (positive and negative) you learned from it. Don’t forget to include some sharp action photos. The higher the resolution, the better.

Let’s make Foxhunting Weekend 2019 the biggest ever. I look forward to receiving your reports. Happy hunting!

NOTES
1. <https://tinyurl.com/y8xzdg82>
2. <www.homingin.com/truckee18>
3. <www.homingin.com/ARDFinRMB>
4. <www.homingin.com/equipment.html#snif4>
5. <www.homingin.com/joek0ov/report>
Unless this column is your first stop, you probably know by now that February is CQ’s annual QRP Special and many of this month’s features are slanted toward low-power communication. I started thinking about what to prepare for this column while traveling home from a project worksite last fall. While tuning across the car’s FM radio dial, I came across a radio station that was playing snips from a “Top 10 List” that had aired on an old episode of Late Night with David Letterman. As I drove along listening to the clip, I thought, “why not do a Top 10 countdown focusing on reasons for operating QRP?” I could poke a little fun at QRO operators (hi), provide some information that both new and seasoned QRP operators may find useful, and most importantly, count down to the Number 1 reason for operating QRP. So, with no further ado, I present the Top 10 reasons for operating QRP.

Number 10 – QRP will Amaze Your Friends, Family, and Fellow Hams
You may be considered immortal when your family and friends learn you have contacted ham operators on the other side of the world transmitting only a few watts of power. Even fellow hams, including the QRO fellows running the legal limit, are sometimes a bit bewildered when they see firsthand the accomplishment of a QRP operator. I recall one QSO several years ago when I was in an SSB pileup trying to work a DX station. After I broke the pileup and told the DX station I was running QRP with only a few watts of power into a horizontal loop, he announced that KA8SMA was some type of “Houdini” for beating out all the high-power stations. A few minutes later I received an email from a QRO station who had looked up my callsign in one of the online call directories, snagged my email address, and sent me an email that simply read “500 watts into a Mosley TA-33 at 60 feet and you worked him before me with QRP and some wire, oh my.” I was not sure if this was a congratulatory email or whether he was upset … maybe a little of both. I think there were a few QRO operators in the pileup who were grinding their teeth after the DX station made the Houdini comment. I do admit that in some instances, credit must be given to the ham on the other end of the QSO for pulling my weak signal out of the weeds; however, at the end of the day, a contact is a contact.

Number 9 – Operating QRP Equals Less RF Exposure
Simply put, as power output increases, so does the potential for RF energy to cause damage to the human body; hence, QRP operators generally stand a much lower risk of contracting an RF-related illness due to lower power output levels. (Ed. Note – To be clear, no study has ever established a causal link between RF exposure at the power levels used by hams and any negative health impact. The FCC standards discussed below were established out of an abundance of caution.) As radio amateurs evaluate the effect of their station’s emissions on the human environment, which also includes the impact on themselves. The FCC has mandated that an RF evaluation must be performed if the station’s transmitter power exceeds the levels shown in Table 1. If the results of the RF evaluation indicate that exposure to RF fields is exceeds the limits established by the FCC, then steps must be taken to correct the problem and ensure compliance. QRP stations are categorically exempt from completing this evaluation since transmitter power levels are well below the power outputs listed in Table 1. Additional information on conducting an RF evaluation is detailed in the FCC’s August 1997 Office of Engineering & Technology (OET) Bulletin 65, Edition 97-01. Information can also be found in recent editions of the ARRL Handbook for Radio Amateurs.

Number 8 – QRP Means Portability
Today’s QRP transceivers can slip into a backpack for a hike down the trail and a quick setup for making contacts from your favorite locations. Add a battery
SOTABEAMS ContestConsole Switching Unit for ICOM Radios

Contesters looking for a quick way to instantly access the voice, CW, and PSK memories on ICOM radios should check out SOTABEAMS’ new ContestConsole. It was designed with the IC-7300 in mind but works with a wide range of other ICOM radios, including the IC-2300H, IC-2730, IC-275, IC-757, IC-7000, IC-703, IC-706, IC-707, IC-7100, IC-718, IC-7300, IC-7400, IC-746, IC-746PRO, IC-756, IC-756PRO, IC-756PROII, IC-756PROIII, IC-7600, IC-7610, IC-7700, IC-78, IC-7800, IC-7850, IC-7851, IC-9100, IC-910H, ID-4100A, ID-4100E. Functionality varies for each radio.

SOTABEAMS new ContestConsole connects between your radio and microphone and provides instant access to your memories without the need to have them displayed on the radio screen. Other features include a Transmit push-to-talk button; a transmit low power tune function, which sends a 10-watt carrier for antenna tuning (optional lead required); push-button frequency control (frequency up/down - or memory channel up/down); external push-to-talk socket for a footswitch; and an auxiliary 3.5-millimeter microphone socket.

The SOTABEAMS ContestConsole is available now and has a suggested retail price of $89.89 in Europe, and $74.90 everywhere else. For more information, contact SOTABEAMS, Unit 1 The Green, Fountain Street, Macclesfield, SK10 1JN, UK. Phone: +44 (0) 1625 501643. Website: <https://tinyurl.com/ya63r8du>.

Table 1

<table>
<thead>
<tr>
<th>Band</th>
<th>Transmitter Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>160, 80 and 40 meters</td>
<td>500 watts</td>
</tr>
<tr>
<td>30 meters</td>
<td>425 watts</td>
</tr>
<tr>
<td>20 meters</td>
<td>225 watts</td>
</tr>
<tr>
<td>17 meters</td>
<td>125 watts</td>
</tr>
<tr>
<td>15 meters</td>
<td>100 watts</td>
</tr>
<tr>
<td>12 meters</td>
<td>75 watts</td>
</tr>
<tr>
<td>10 meters</td>
<td>50 watts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number 5 – Cool Clubs to Join!</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are lots of active QRP clubs one</td>
</tr>
</tbody>
</table>

Portables operations at a township or county park away from my noisy QTH and neighborhood. Unless you live off the grid or in a location free of RF noise emitting gadgets, you owe it to yourself to experience a little HF magic.

Table 1. FCC’s power thresholds for evaluation of amateur radio stations.

<table>
<thead>
<tr>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>10 meters</td>
</tr>
<tr>
<td>12 meters</td>
</tr>
<tr>
<td>15 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
<tr>
<td>160, 80</td>
</tr>
<tr>
<td>40 meters</td>
</tr>
<tr>
<td>17 meters</td>
</tr>
<tr>
<td>20 meters</td>
</tr>
<tr>
<td>30 meters</td>
</tr>
</tbody>
</table>
can join such as the Michigan QRP Club, QRP Amateur Radio Club International (QRP ARCI), and the North American QRP CW Club (NAQCC), among others. The QRP ARCI organizes the annual Four Days in May gathering at the Dayton Hamvention® and sponsors several QRP contests throughout the year. NAQCC promotes “doing more with less” while encouraging the use of CW and simple wire antennas. All of these clubs share the same common theme: Promote low-power operation. Contest/DX clubs aside (membership in my contest club is generally comprised of QRO operators), I have only heard of one “QRO Club” in my nearly 40 years of being a ham. I am not sure, but perhaps there are not many QRO clubs because no one really wants to admit they need to run high power to make contacts (hi … just kidding folks — no need to send an email)

Number 4 – Instant Gratification

Whether DX or stateside, knowing you made a contact with five watts or less while others are plugging away with much more power is gratifying. Try it, but beware, you may be bitten by the QRP bug. Many hams have shared with me that after making their first QRP contact, they could not believe what they had accomplished. After making their second QRP contact, they realized operating QRP-style is not difficult, and after making their third contact, they said QRP had become an obsession. One can argue you are obsessed with QRP when you gather all your non-QRP gear, place it in a cabinet or on a shelf, and refer to it as the “stuff I used back in the day.” I’ll spare you the photo of the cabinet I have in my shack. I removed the cabinet’s front panels and placed all my “back in the day” radio gear inside. Even my XYL comments that the stuff I used to use looks nice inside the cabinet.

Number 3 – No Violations Under Part 97.313(a)

Even Big Brother wants you to minimize transmitting power as much as possible. Part 97 is found in Title 47 of the Code of Federal Regulations and identifies the rules and regulations that apply to the Amateur Radio Service and the conduct of amateur radio operators. The FCC is tasked with enforcing these rules. Section 313(a) of the Part 97 Rules states “An amateur station must use the minimum transmitter power necessary to carry out the desired communications”. The intent is not to force hams to be QRP operators, but rather to use only the amount of transmitting power necessary to establish and sustain a contact. In other words, if you can make the contact with 50 watts, use 50 watts and not 1,000 watts.

Number 2 – You Can Do It!

If I can do it, you can do it. No special equipment needed; just turn the power output knob counter-clockwise. It is plain and simple. Give it a try.

And the Number 1 Reason to Operate QRP…

You can proudly wear a shirt like the one in Photo A that shows the evolution of a QRO operator into a more sophisticated QRP operator (hi). I learned about the design on this shirt from a friend who saw it on a YouTube® video by Cliff Batson, N4CCB, of Franklin, Tennessee. I contacted Cliff to find out where he purchased the shirt and discovered he had it made at an online T-shirt store. Kudos to N4CCB for incorporating the human evolution graphic — it sums up nicely the transformation of a ham from QRO to QRP. I have seen this idea applied to other pursuits, but it is well-suited for the QRP arena. I recently had one of these shirts made at an online store so I could have my very own. In case you are wondering, yes, I will be wearing this shirt to all future ham gatherings.

Odds and Ends

If you have any additions to the Top 10 list or want to share your number-one reason for operating QRP, let me know and I will try to include it in an upcoming column. There are five more QRP/Low Power Communications columns in 2019 (April, June, August, October, and December). If you have an idea for an upcoming column or something you would like to share with others, pass it along. Several readers commented on last October’s column “A Portable QRP Antenna Showdown” with several seeking for another showdown, but with more antennas to compare. I am planning another camping trip to Michigan’s Upper Peninsula later this year and will be taking the radio gear, so stay tuned. If you have a wire antenna design that you want tossed into the ring for the showdown, send it along and I will do my best to include it.

Enjoy the Hobby read, read, read…

Amateur Radio Roundtable

Bringing ham radio to you

Katie Allen WY7YL

Tom Medlin WS5KUB

A weekly program with guests from around the world. Simulcast on famous shortwave station WBCQ “The Planet” on 5130 KHz.

Join us at W5KUB.COM

Every Tuesday night at 8:00 PM Central

www.cq-amateur-radio.com
We’d like to welcome Eric Nichols, KL7AJ, to our contributing staff, along with his new “Analog Adventures” column. As more and more of our technology becomes digital, it’s sometimes easy to forget that radio itself is analog, and always will be. The goal of this column is to help make sure that we all keep up on the knowledge and techniques needed for sending and receiving analog radio signals, even if the modulation on those signals is digital. – W2VU

I think it’s most fitting and timely to launch this new column on analog methods in the CQ’s annual QRP Special. In this column, we will explore classical as well as cutting-edge analog techniques, and hopefully take you on some very interesting detours.

It’s probably best to start out by defining what analog means. For many of us, analog means not digital. While this is a workable definition in the narrow sense, I believe it’s a much more inclusive term. For me, at least, analog means focusing more on the basic science of radio, while recognizing that digital methods are a manifestation of the technology of radio. Radio waves are analog by nature; this fact can often be obscured by the sheer ubiquity (and surprisingly low cost) of sophisticated digital signal processing hardware and software.

In this hopefully never-ending series, we will explore devices as diverse as logarithmic amplifiers, A-to-D (analog-to-digital) converters, D-to-A converters, temperature sensors, light intensity sensors, RF voltage, current, and power sensors, and zero-drift DC amplifiers. We will explore measurement methods “from DC to daylight,” some very old, and some very exotic.

You’re Amazing!

Since it is QRP month, let’s begin by examining just what is necessary to receive a radio signal of the sort that QRP artisans (like you) work with on a daily basis. You’ll be astonished that radio works at all.

Let’s take a look at the receiving end. A typical HF communications receiver is calibrated so that an S9 signal (strong but not bone-crushing), represents 50 microvolts at the antenna terminals. This is a good reference point, and while what constitutes S9 isn’t chiseled in granite, 50 microvolts is fairly standard. But how much power is that? After all, it’s power that really does the work. Well, if we assume that the input of an HF receiver is a nominal 50 ohms, we can calculate the power input using the formula E^2/R. Plugging in 50 microvolts, or 0.000050 volts, for E, we come up with a staggeringly minuscule 50 picowatts. That’s not a lotta watts.

And remember, this is for a typical S9 signal. Now, let’s scoot the power down to an S1 or so, a region that QRP denizens are more than likely to inhabit. Traditionally, each S-unit represents 6 dB. Between S9 and S1, we therefore have about 48 dB of change. For simplicity’s sake, let’s round that up to 50 dB, or a power ratio of 100,000. This means that an S1 signal is about 100,000 times weaker than our already measly 50 picowatts. This comes out to about 0.5 femtowatts (or 5^-16 watts). This is almost an indescribably feeble signal … and yet we work with those kinds of signals on a routine basis. Are you impressed yet? You should be.

The Great Equalizer

One of the great equalizers between a “big gun” station and a peanut whistle station is distance. Radio signals attenuate as the inverse square of the distance. On the surface, this might seem to be sort of depressing; radio signal strengths would seem to drop off a lot quicker than we’d like them to. However, one of the elegant mysteries and beauties of the logarithm — and its ilk — is that after a while, everything sort of levels out. The fact that we’re still receiving signals from deep-space probe Voyager 1, which is on the order of 30 billion miles out in space and transmitting a few tenths of a watt (on a really good day), testifies to this fact. The same principle that allows Voyager 1 to “compete” with much closer and newer spacecraft is what allows the QRPper, the QRPper, and the QRPpeper to compete with the world-class contest station. Well, maybe not in a head-to-head shootout, but at
least on the same playing field. The ether is immensely even-handed, and we should rejoice in this fact.

Lock Me In

When it comes to detecting weak signals, far and beyond the call of duty, my favorite analog device is the lock-in amplifier. The lock-in amplifier has been used for everything from medicine to metallurgy, and yet is largely unknown in amateur radio. It is an old method, but one that has not been surpassed by any digital method, when it comes to extracting nearly non-existent signals out of the noise. The tried-and-true lock-in method will certainly play a major role in weak-signal work on our two new ham bands on 630 and 2200 meters, as the venerable technique is discovered (or re-discovered) by enterprising, experimentally minded, radio amateurs. We will devote a significant amount of space to lock-in methods and machinery in this column over the months to come.

Ah, Yes – Transmitters, Too

Every ham should build a QRP transmitter … or two … or three. It’s really hard to grasp many electronics concepts, especially when it comes to RF techniques, without building some actual hardware. A QRP transmitter is a good way to use up all those 2N2222 transistors lying around in your parts drawer (You do have a parts drawer, don’t you? [See Sidebar]). Some enterprising ham once lashed together 100 2N2222s to build a 100-watt linear amplifier. While this was not the most practical application of RF technology, it did prove that, with enough patience (and spare parts), you can make almost anything work.

Coming Up Next: The Amazing Operational Amplifier

I will close this month’s column with a teaser for the next one. We will explore the versatile operational amplifier (op-amp) in all of its glorious configurations — well, at least a few of them. The nice thing about the op-amp is that it can make anyone a circuit designer. You don’t have to know all the persnickety details like biasing and temperature compensation that plagued all of us old-time “discrete component” designers. The op-amp lets you get right down to the business of actually doing stuff, and you’ll be surprised to learn just what kind of stuff that can be.

Until next time, keep the soldering iron hot! — 73 de KL7AJ

A Great Book for 2N2222 Projects

If you’re a fan of the 2N2222 transistor, here is a must-read: *Build Your Own Low-Power Transmitters: Projects for the Electronics Experimenter*, by Rudolf F. Graf (ex-KA2CWL), and William Sheets (K2MQJ). It’s available in print from Amazon at <https://tinyurl.com/y9fu3exq> and online via Google Books. This innocuous-sounding title is deceptive. It is loaded with intriguing transmitter projects with an emphasis on the venerable 2N2222. I ended up being compelled to read the entire tome online as a side-effect of researching this column (an occupational hazard of any tech writer). Doubtless a few of these projects will materialize on my workbench before long. A search online of the authors leads even farther to a large number of other intriguing works; I am somewhat ashamed that I knew nothing of either of these authors before a few days ago. Be forewarned, this book is addictive; I’m certain I will find the other works by these fine authors equally so.

For QSO on the GO Get the Best... the PreciseLOOP HG-1 Antenna!

Proven Performance
Proven in the very challenging environment of Mt. Kilimanjaro, yet perfect for a casual QSO at a nearby park. The PreciseLOOP is ideal where portability and performance matter. Many operators favor the MLA (Magnetic Loop Antenna) for Field Day, SOTA and restricted HOA operation. An MLA is a convenient, lightweight antenna, which can be deployed quickly.

PreciseLoop Advantage
A dipole’s takeoff angle is considerably higher in portable deployment. As a result an MLA outperforms a low dipole by as much as 6dB at the lower takeoff angles for DX use. The high-Q resonator imparts a very narrowband frequency selective bandpass filter ahead of the Rx front-end stages. Such an incidental preselector comprising the antenna itself greatly improves receiver performance.

For QSO on the GO Get the Best... the PreciseLOOP HG-1 Antenna!

Proven Performance
Proven in the very challenging environment of Mt. Kilimanjaro, yet perfect for a casual QSO at a nearby park. The PreciseLoop is ideal when portability and performance matter. Many operators favor the MLA (Magnetic Loop Antenna) for Field Day, SOTA and restricted HOA operation. An MLA is a convenient, lightweight antenna, which can be deployed quickly.

PreciseLoop Advantage
A dipole’s takeoff angle is considerably higher in portable deployment. As a result an MLA outperforms a low dipole by as much as 6dB at the lower takeoff angles for DX use. The high-Q resonator imparts a very narrowband frequency selective bandpass filter ahead of the Rx front-end stages. Such an incidental preselector comprising the antenna itself greatly improves receiver performance.

© 2018 preciseRF all rights reserved

13690 Wisteria Dr NE Aurora, OR 97002 ph: (503) 915-2490

preciseRF.com
This month, I thought I’d work on a kit that has great instructions and follows a step-by-step approach to its assembly. The Vectronics 30M receiver kit has been around for quite a few years, yet it’s still available and works. The Vectronics lineup of receivers covers the 80- through 20-meter bands and has a matching set of QRP CW transmitters to go with each of them. For a beginning builder, I found this kit to be straightforward and relatively easy to solder. The supplied PC board is single-sided with large pads, making desoldering a lot easier, should it be necessary. The only drawback I found is that the PC board ground pads are not thermally isolated, making it necessary to turn up the heat a little bit on my soldering iron to prevent cold solder joints on the ground pads. Owning a variable heat thermostatically-controlled soldering station is always best, and this kit surely pointed that out.

The parts count is relatively low as receiver kits go, and there is a separate bag of band-specific parts that are the first parts called for in the manual. The rest of the parts are the same regardless of the band. The same goes for the cases, as the only difference between them is which of the supplied stickers you use to mark the front and rear panels of the optional case. I highly recommend the matching case kit as it saves a lot of time when assembling your kit.

When I sorted my parts, I kept the band-specific parts in their bag, as those were the first to be mounted. I sorted the rest of the parts as I usually do, with resistors in one compartment, disc capacitors in another, and so forth. A few interesting things I noticed included the fact that there were only two resistors to be mounted on the board. Usually, most kits have quite a few more resistors. There are sockets provided for both 8-pin ICs and I recommend following the directions carefully to ensure the notch on the sockets as well as the ICs point in their correct direction and that the proper IC is mounted in the proper socket. I have found by using my needlenose pliers I can quickly...
straighten the pins on an 8-pin IC in preparation for insert-
ing it in its socket.

The headphone jack is a quarter-inch mono jack, so be sure
to find an adapter if your headset uses an eighth-inch stereo
jack. The antenna input is an RCA type phono jack. I used
an RCA to BNC adapter to connect it to my Four States 4S
Tuner that was hooked up to my outdoor vertical antenna I
use for testing kits.

The alignment procedure I followed was very simple. There
are only two components you use besides the main tuning
 capacitor to perform alignment. One is a slug-tuned trans-
former, and the other is a simple trimmer capacitor, also
mounted on the board. I used a signal generator that was set
for the low end of the 30-meter band and turned the tuning
control to the left. I tuned the slug with a ceramic tuning tool
until the signal was heard, then peaked the trimmer capaci-
tor, and that was it. It didn’t take very long at all. Unfortunately,
as when I have built previous kits, the band was dead, and
so I waited until the next day to try again. Conditions were a
lot better, and I heard lots of signals including CW, RTTY,
and FT8. You can use a signal generator and a frequency
counter to calibrate your tuning dial and mark the front panel
accordingly. It is a fun kit to get a new builder into the idea
that they can build a simple receiver and hear people talk-
ing. The four different kits are the VEC-1120K, the VEC-
1130K, the VEC-1140K, and the VEC-1180K for 20/30/40/80
meters, respectively. The VEC-1100KC is the matching case
that is designed for use with all four receiver kits.

The matching transmitter kits (1200 series) use a VXO, so
they don’t cover quite as much of the band. The receiver kits
sell for $29.95 and the matching cases are $14.95. Go to
<www.vectronics.com> to order any of these Vectronics
receiver or transmitter kits.

MS101 USB Mouse Kit

Another great beginner’s kit is the MS101 USB Mouse Kit
from Make It Yourself. This kit is designed to help introduce
people to the idea of kit building, even if they are not hams
or have an interest in radio. The end result is a USB mouse
that you can use with your computer. The assembly time is
less than an hour, and it was quite an enjoyable experience.

The PC board is a well-marked single-sided board, ideal for
first-time builders. The instructions are available online and
are extremely well-detailed. The relatively low parts count
makes for easy parts sorting. In my kit, there were a couple of
extra parts that had spaces for them on the PC board, but were
not called for in the assembly instructions. Just keep them in
your spare parts bin for future use on other projects. I got a
pleasant surprise when I plugged my completed mouse into
the USB port in the front of my new ICOM IC-7610. The mouse
cursor moves over the part of the screen containing the spec-
trum scope and waterfall display. Using the left mouse button in the display field moves the VFO to that frequency point and re-centers the display. Right-clicking on a point lets you momentarily hear the signal present at the point where the mouse is pointing and releasing the right mouse button returns the VFO to where it was previously.

The Miykits USB Mouse kit is available for $15.99 at <www.miykit.com>. Since it is sold through Amazon, any benefits of Amazon Prime membership should apply.

My Future Travels
Finally, I plan on being at the Orlando Hamcation in February, the Lincoln Hamfest in March, and Ozarkcon in Branson in April along with the Green Country Hamfest in Claremore, Oklahoma in April. See you there!

– Until next time, 73 de KØNEB
Behind the Scenes at: HamTestOnline

Here is the first of a series of articles going behind the scenes of our advertisers. This month we are taking a look at HamTestOnline which offers online courses for the U.S. ham radio license exams.

HamTestOnline integrates study materials with question drill, using the actual exam questions and answers. The software tracks your progress and focuses on weak areas, drilling questions you get wrong more often than ones you get right. While viewing their website we came across the informative and entertaining user story below. We think you will enjoy it too.

Christina’s Story

BY CHRISTINA CUNNINGHAM, KT1NA

Until I met my husband, John, W1AI, my only exposure to ham radio was a brief visit to a ham radio store back in 1974, where the owner said, “Little girl, there’s too much math, and you would have to learn Morse code. Just buy a CB radio.”

Jump to 2012, and I find myself engaged to the owner of the HamTestOnline™ website, which helps people pass the FCC ham radio license exams. I wanted to help him with the website, but he says I should have to have a ham radio license first. I’m thinking, “Uh-oh, math and Morse code! Run away!” But we’re engaged, so running is not an option. So I have to tell my then-fiancé that I am completely Lousy (with a capital L) at math and not sure I could learn Morse code. I’m in some real hot water here.

But wait, I’m saved! He explains that the Morse code provision was dropped in 2007 *phew!*, and you can basically skip all of the math-related questions on the exams and still pass the exams *double phew!* With those obstacles cleared, I decide to go for all three — Tech, General and Extra — at once. He’s telling me his courses are that good, so I figure, what the heck, I might as well start at the top rung. For me, I’m also testing his earplugs. I was so glad I did!

We picked an exam date 6 weeks out. My first thoughts were “OK, now I’ve stuck my neck out. I hope I can do this!” John wanted to help, but he said, “No, I want to be a regular user, no assisting allowed.” I used an iPad to study for portability.

I started with just the Tech topics turned on. Hey, this is fun! I remember some of the Ohm’s Law, current and voltage stuff from 37 years ago, then I realize I’ve forgotten most of it. But wait! This website is giving me the basics, and when I get it wrong, it’s bringing back those questions a lot sooner than the ones I got right! I’ll be doggoned, it does know me. Just like the slogan. I’m thinking, “Holy mackerel, where was this software when I was in high school trying to learn math?!?”

I got to about 70% on the Tech course, left those topics on and then turned on the General topics. I studied approximately one hour a day Monday thru Friday (I had a full time 40 hour outside job). I studied on weekends too, as much as I could, sometimes 6-8 hours. Busy or not, I had a deadline.

All this time, my exam date was looming. I got to 70% on the General and turned the Extra topics on. When I got to 90% on all three, four days before my exam, I was really confident. My exam was set for a Saturday night, 7:00 pm. I had stayed in Study mode up until this point, but now I took 4 practice exams to be sure I was ready, and then went right back to Study mode!

John drove me to the exam session, and I studied on the iPhone the whole way there. There were a lot of volunteer examiners in the exam room, I’d say as many as there were people testing. I had read about noisy sessions, so I brought my earplugs. I was so glad I did!

I remember some of the Ohm’s Law, current and voltage stuff I might as well start at the top rung. For me, I’m also testing his earplugs. I was so glad I did! And now I’ve stuck my neck out. I hope I can do this!”

The room was buzzing, and the examiner who scored my exams said that in twenty years as a volunteer examiner, this was only the second time he’d seen someone pass all three in one session! Then he asked me, “What book did you use?” and I said, “There’s a book? All I used was HamTestOnline!”

Every VE in that room was gob-smacked at my accomplishment. I remember there were some General-class VEs there who seemed to think if I could do it, they could too. John let them know that HamTestOnline gives free Extra courses to active VEs who hold General or Advanced class licenses.

What a great night. I passed all three! Now I could use my new Extra license to talk around the world, join my CERT group ham radio team, and work on the website with my fiancé. Also, I was lucky enough to get the vanity call sign I applied for — John said I could get a shorter 1x2 (like his, W1AI), but I really really like mine because it spells my name, so I’m keeping it.

So there you have it, folks. I am living proof that HamTestOnline works! This is a serious case of, “If I can do it, anybody can do it.” It’s so exciting because it opens up a whole new world to a lot of people who might not otherwise be able to pass the exams (raising hand)! I know you can do this. Come on in, the water’s fine!

Christina, KT1NA, General Manager, HamTestOnline
Extra Class Accredited Volunteer Examiner
for those of us old enough to remember, one song from the Beatles’ Abbey Road album contains the lyrics, “And in the end, the love you take is equal to the love you make.”

To me, these lyrics are a poetic, musical way to express the notion that what you put into something is what you get in return. In other words, not taking a little risk and not putting in a little work translates into diminished non-rewarding results; however, putting your all into an endeavor is far more rewarding with greater results. However, putting out your all is much easier said than done. Perhaps, like me, you’ve found, with the passing of time, that it’s all too easy to become complacent and maybe even lackadaisical when it comes to ham radio involvement. I find myself settling in a comfort zone, which, in and of itself, isn’t necessarily bad, but when I’m no longer learning from others or sharing what I know, then it’s time to “step up my game and to get involved!”

Stepping It Up!
I’ve found that a surefire way to step up my game is to simply get involved at some level. The more involved I become, the more I learn. Getting involved, even at a minimal level, is beneficial. For instance, as a beginner, one may not be particularly interested in some ham radio mode or activity. Perhaps it appears too daunting or time consuming. The thing is, by getting involved, even at an introductory level, one can’t help but learn something new. After all, learning is all about taking prior knowledge and applying it to something new. In other words, we learn from experience.

Getting Started
Experience is the best teacher. Hams are an enthusiastic, inclusive, group of hobbyists. Hams welcome anyone with a genuine interest and a willingness to learn, whether it be DX (long distance), radiosport (contesting), or public service, to name only just a few ham radio activities. These groups are always looking to expand their ranks. Getting involved is a sure-fire way to gain experience and to build upon existing communication skill sets. Listen to local FM repeater nets for upcoming classes or events. Club meetings and newsletters are another good source announcing ham activities. The next step is to contact activity leaders and ask them how you can help. Don’t be shy if you don’t have any experience; you’re still welcome. Depending on the activity, well-oiled, dynamic groups will pair you up with a more “seasoned” hams.

A Few Cases in Point
Scouting in America can always use dedicated, enthusiastic mentors to assist scouting leaders with youth activities such as JOTA (Jamboree On The Air). Local scout leaders can always use ideas and technology managing an event. Lori Owens of the Lincoln Trails Boy Scout Council is one of the scout leaders involved with Spookoree (Figure 1), a family fun Cub Scout event involving the whole family participating in crafts, a haunted trail, fun, and ham radio. This event took place over the weekend of October 19-21, 2018 at Rhodes-France Scout Reservation near Pana, Illinois. I became aware of it through my friend and county EMA manager Jim Pitchford, N9LQF (Photo A).

Spookoree is a popular event for the Lincoln Trails Council. The idea of the camp is to have Cub Scouts and their families experience various activities such as archery, crafts, yard games, obstacle course, and JOTA along the Halloween trail (Photo B). All these event activities are staffed with adult volunteers and they all need to have communications. Jim, N9LQF, provides the scout leaders with commercial-grade radios and he monitors the frequency for any needs that may

*Email: <ko0z@cq-amateur-radio.com>
arise (Photo C). Jim also spearheads the JOTA event and recruits area hams to introduce these young scouts to the fun of amateur radio. That’s how I became involved with this event. All I needed to do was to wake up early on Saturday morning, drive myself over to the scout camp, and to watch the boys and their families have fun making contacts via ham radio. My wife, Debbie, KC9ULA, came along to lend a hand (Photo D).

When I arrived on site, Jim; Mark Osborn, WA9SXK (Photo E); and Jeff Naville, KC9WZO (Photo F), had already erected a few HF dipoles, VHF verticals, rigs and power supplies. Jim provided all the equipment. He needed experienced hams to assist scouts with three operating positions. I took position three (Photo G). Between our three stations, Cub Scouts made contacts with hams in Canada, Illinois, Maryland, Pennsylvania, and Ohio. A huge “shout-out” to Matt Miller, KD8OHN (Photo H), from Ohio, who spent a lot of time chatting with the scouts visiting my station at the camp and making them feel very welcome on ham radio. If only he and the other ops who chatted with the scouts could have seen the smiles on the faces of the scouts and their proud parents. Seeing those smiles, alone, made our efforts so worthwhile. Lori Owens and Jason Dion, KC9JCB (Photo I), were so appreciative of our collective efforts to add another offering to Spookoree’s already exciting activity lineup.

There’s More!

Spookoree was a resounding success and it was good to have that experience, but now it was time to get ready for the
next public service Boy Scout event a few weeks later, called “Last Scout Standing.” It took place at Otter Lake in Macoupin County, Illinois, over the weekend of November 3-4. Each year, Lincoln Trails Council leaders offer their senior Boy Scouts a challenging weekend. Every year, the venue changes and leaders plan for months a series of competitive challenges for their teenaged scouts. Jim, N9LOF, knows I love CW (Continuous Wave) using Morse code communications. Earlier in the year, he asked me if I’d like to put on one of the challenges in “Last Scout Standing.” My challenge would involve the scouts using Morse to send, receive and translate a message in a challenging way.

Last Scout Standing Challenge
This was my first year involved with the program and this 63-year-old doesn’t have the endurance that these young Scouts possess. My task was to have the Scouts decode their instructions for their next challenge, but not to make it “too easy.” Out of knowing my challenge involved communications decoding, my scouts had no idea of what to expect, but they were instructed to be prepared. Scouts were divided into teams of four. We had eight teams beginning with staggered start times. Their day began around 5:30 a.m. and my station was number five for the day. My first team arrived by 9:15 a.m. These scouts were hot on the trail and they meant business.

My first half of the challenge awaiting the scouts was to learn about DFing (direction finding). I had four handheld transceivers (HTs) tuned to 147.480 MHz. Near the lakeside, on a peninsula, sandwiched between two trees and buried under some leaves, I had hidden a low-power transmitter with a password attached to it. Their task was to find the hidden transmitter, retrieve the password, and bring it back to me before they could do the second half of the challenge which involved Morse code. First, some basics.

DF Basics
To make the challenge a bit easier, I attached the 15-milliwatt transmitter to a dummy load (non-radiating antenna). Don’t be fooled, dummy loads will radiate, just not very well, which was fine for my purpose. I instructed the scouts to start walking until they heard the sig-
The next step was to get closer to the signal’s origin and use body fading (holding the HT close to the chest and using your body as an attenuator) to help produce a direction-finding null. When the signal gets stronger, that means you’re getting closer. Moving the frequency a step at a time and finally removing the antenna will help zero-in on the hidden transmitter.

The scouts loved the activity. My first team took the HTs, paired up and one pair took one side of the peninsula and the other pair took the other side and proceeded on their way. Twenty minutes later they came back with the password. Some teams were more organized and better-prepared, and it showed, but all teams were enjoying the challenge.

Morse Code Challenge

The second-half involved Morse Code. Since I may have more than one team at a time, I decided to use flashlights instead of code practice oscillators to send the code (Photo K). That way, if there were two teams transmitting there would be less confusion as to who was sending, and each team could remain competitive without interference. Each team had an alphabet sheet with Morse code and was split into two groups and given a scrambled message to be sent and received using Morse. Using flashlights proved to be a good idea, because I did have overlapping teams and they didn’t interfere with each other. After sending their coded messages, the team regrouped and unscrambled the words, which told them that their next task was to proceed down the trail to the dock where they’d be met by adults who’d assign them a canoe and directions.

I found this activity to be very rewarding and I believe the scouts did as well. It takes time to send Morse using a flashlight. I was worried that the scouts would rush the dah into a dit or they would not leave enough space between letters,
but they seemed to catch on quickly. Each of the eight teams made it through my challenge and into the canoes. Typically, scouts spent 45 minutes to an hour at my challenge.

Problem-Solving

My reward came when I saw these young men take a challenge, own it, come up with a strategy, and then implement their plan. It’s all too easy for older folks to criticize younger generations, but I’m here to tell you that these young scouts would make you take pause and nod your head in approval. These scouts have bright futures and their dedicated leaders and parents can be proud of them. I was only one challenge; these teams had plenty of more ahead of them that afternoon, evening and the next morning. I am honored to have been invited to be a part of these young scouts’ lives and to be a small part of a bigger team that is continuing the fine tradition of helping to shape America.

Being Available

There’s no doubt about it. Getting involved with a project involving others...
is rewarding. Everyone contributing towards a common goal, lending talents, resources and problem-solving skills along the way makes for a more successful outcome. The key thing is to make yourself known to others. Flamboyance, grand entrances, or a fistful of credentials are not prerequisites for volunteering. A willingness to learn and to contribute, on the other hand, is necessary. The next step is to be consistent. Make good on any promises. Be available to assist with a project. Each time it becomes easier because you’ll see what like-minded hams bring to the project and soon, you’ll be learning from them in the classroom of experience. In my case, Jim Pitchford, N9LQF, is my BSA contact. His daughter, Lori Owens, and his son-in-law, JR, know they can rely on Jim for resources.

Contacts and Networking
I am fortunate to have Jim, Lori, and JR as my “in” to area scouting. Jim knows that he can count on me to contribute. As a matter of fact, I already have Spookoree 2019 in my activity calendar. Readers may want to get involved with something similar with their local scouting organizations, but they may not have the same contacts as I do, so who could they contact? Lori and JR Owens are great resources. They can put you in touch with their counterparts in your area. Lori’s email is <loriaowens@hotmail.com>. The Lincoln Trails Council is <www.lincolntrailscouncil.org>.

Reach Out
Lori and JR and their associates are dedicated, thoughtful, caring adult leaders. They are happy and more than willing to promote scouting. I am sure they can give you many helpful tips on how to introduce your group to area scout leaders. I’m glad that I am associated with others who are willing to share their talents, time, and resources for the betterment of us all. With that in mind, I’d better get about the business of getting online and renewing my BSA Youth Protection Training for 2019’s JOTA, Radio Merit Badge workshops, and any other activity that may be around the corner. I like involvement for I find it rewarding and it helps keep me active. The Beatles lyrics are spot-on, “And in the end, the love you take is equal to the love you make.” Thank you for reading CQ and I hope to hear you on the air.

– 73! KO0Z
There are some interesting claims about E- and H-field antennas that keep trying to revise physics. In Photo A, I have my E-field generator. A balloon and a silk scarf are great at generating an E or electrostatic field. But it is a static field, and why we call it static electricity. E fields do not propagate, they stay put. (OK, I will admit the charged plasma from solar storms does hit the earth, but the E-field that accompanies all those particles traveled with the plasma and did not propagate at the speed of light!)

In Photo B, I have my H-field. The magnetic lines of flux exist only between a north pole and a south pole. And while they can extend some distance from these poles, they do not propagate on their own. (And yes, I am familiar with the work of Nathan Stubblefield and his technique of communicating with lines of magnetic flux using large induction coils in the early 1900s. But his best DX was in tens of feet, and his quarter-mile demonstration was made using a quarter-mile-long induction coil.) Bottom line, a transmit antenna that isolates the E and the H fields cannot radiate.

AMSAT GOLF Antennas

In several previous columns, I have mentioned the extremely broadband nature of planar disk antennas, and I’ve been working with AMSAT to design some of these for future satellites. For one of the GOLF series of satellites, I started out with a 1.269-10.5 GHz planar disk antenna, on the far left in Photo C. Then I was asked if we could extend the frequency range a bit so the same antenna could be used on GPS L1 and L2 at 1225 MHz in addition to L-band, S-band, and C-band reception. Antenna range testing at 1269 MHz wasn’t as good as I had hoped, so the antenna needed to be a bit longer anyway. Adding GPS L2 was just another reason to make it a bit longer, and we have the antenna on the far right in Photo C.

“Gee, you know the SDR radios used on the other bands could also be used as a 435-MHz backup receiver.” Now I got to add the top loaded T-element for 435 MHz into what became the middle antenna. Note that the base loading inductor for the 435-MHz element is doing double duty as an RF choke to isolate the L-band+ elements from the 435-MHz element. Prototype testing will continue when the antenna range dries out a bit and a prettier version will fly in a few months.

Five & Dime

Many of the new AMSAT cubesats will be using a 5-GHz up /10-GHz down RF system, thus the designation “5 & Dime.” Yes, many hams have already panicked over the perceived high cost of putting together a station to work these birds. Hey, we’re cheap too, OK? In Photo D, you see the basis of a 5 & Dime station. Many of the satellite TV services are now using LNBs with built-in frequency synthesizers. The Octagon LNB in the photo is one of these crystal-controlled LNBs and sells for about $15. The 10-GHz amateur satellite band comes out of the LNB at about 700 MHz and is stable enough to listen to 10.3-GHz SSB signals. Plus, 700 MHz is in the old UHF TV band, so one of the low-cost, software-defined radios that could pick up analog TV channels...
becomes your receive system. AM, FM, or any number of digital formats just become software in the SDR.

At the moment, we are not sure that more than just the LNB feed looking at the sky will be needed for the receive antenna. While an old Direct TV or Dish Network dish would work fine with these LNBs (after all, they were designed to work with those dishes), you would have a lot of gain and a very narrow beam. Probably too narrow to easily use unless you have an automatic satellite tracking system with less than 3° of error. Again, it isn’t clear that you are going to need that much gain. We are not trying to receive a wideband TV signal from 23,000 miles away, but a much narrower band signal in low earth orbit. A small dish or just a simple horn antenna slipped over the LNB would be an easy project. Total cost should be less than $50 for the 10 GHz/Dime receive system.

For the transmit side, I show a HackRF One software-defined radio that goes up to 6 GHz. Now throw in one of those WiFi extenders for 6 GHz and you have your uplink transmitter.

The 5.6-GHz ham band was chosen as the uplink band because of the availability of low cost SDRs that cover 6 GHz. Well, international frequency assignments also had a little bit to do with it. Making the 5.6-GHz uplink part of its own dish, or perhaps a simple patch array, are also antenna possibilities. See, we’re keeping it simple and inexpensive.

Ideas Wanted

As always, we welcome your questions and topic suggestions. You guys do come up with some good ones. This month’s discussion of E-H antennas came from a reader’s inquiry. Just drop a snail mail to my Qrz.COM address or an email to <wa5vjb@cq-amateur-radio.com>. Spring is not far away, so it’s time to start planning those big antenna improvements. For other antenna articles and projects, you are welcome to visit <www.wa5vjb.com>.

Photo C. Several planar disk antennas being developed for use on an AMSAT GOLF-T cubesat. From left, versions for L-band, S-band, and C-band; L/S/C, GPS and 435 MHz; and L/S/C plus GPS only (before adding 435 MHz). See text for details.

Photo D. AMSAT “5 & Dime” downconverter and SDR plus SDR uplink transmitter.
Though the calendar may tell us we’re mired in the winter months, this is a great time of the year to be a “car nut.” But then again, most car nuts — myself included — enjoy their pursuit throughout the year anyway.

What makes this time of year fun is indoor car shows. Some feature the latest models from Detroit, Europe and Asia; others focus on antiques, classics, and custom creations. And from the proliferation of car enthusiast TV shows available on cable, satellite, and internet channels, interest runs high among those who define love as a “many fendered thing.” (Sorry, but I felt I had to do that.)

So if you enjoyed being part of the performance car era, classics, customs - or perhaps you still participate - there is no end of entertainment to be found at car auctions, trade shows, swap meets, or at the many “cars & coffee” events that take place across the country. If you live in a moderate climate area, there’s an event almost every weekend. Doesn’t matter if you love GM, Fords, MOPARs, or any of the many foreign performance models, there’s fun to be had acquiring, maintaining, restoring, and showing off your treasure.

A show I attended in Los Angeles inspired this installment of Mobiling. More on that later.

Warning: if you were born after 1990, much of what appears below will appear to be written in a foreign language.

You Never Forget Your First...

I’ll skip the first two but submit that my first car was most of a 1955 Plymouth (a good portion of it had rusted away) purchased in 1968 for the princely sum of $50. It featured a “three on the tree” manual shift, a wheezing flathead six with an oil-bath air cleaner, pop-up cowl ventilation, 6-volt electrical system, and a tube-driven AM radio that didn’t work on purchase, but a new vibrator set that right. It just took some time to warm up. I got six months out of that car, sold it for $35 and bought a ’63 VW (after all, it was the ’60s). In retrospect, I think that old Plymouth was one of the better automotive values I ever enjoyed in terms of investment ratios. Later on came more “real” cars with big V8s (and big appetites for fuel, performance, and replacement parts).

For me, ham radio came a bit later, but as a person who turned wrenches, installed sound systems, and later CB radios to pay my way through college, in later years those skills set the stage for building some pretty awesome mobile amateur radio platforms. I still have most of those tools, so if you need distributor points set to their proper dwell angle, I’m still your guy.

Best of Both Worlds

So why not combine classic cars with a classic radio? Well, I didn’t invent that idea. Some of it was organic, as in, the classic car and classic radio may have aged gracefully together, but there are a few folks out there who have taken the time to meld two great hobbies into a work of art that features both.

See the accompanying photos (Photos B, C, and D) from last year’s classic auto show held at the L.A. Convention Center. Many TV show luminaries were there, including Wayne Carini of Chasing Classic Cars (Photo...
B), Mike Brewer of Wheeler Dealers, and more. There was a seemingly endless display of antique and custom creations but an aging custom Ford caught my eye because of its California-issued ham license plate. (see Photos C and D). Going back through my photo archives, I also found the accompanying pictures of a nicely restored Ford van that was displayed several years ago at the Dayton Hamvention® (Photos E, F, and G), then held at the old Hara Arena complex. You have to love the work that went into creating a mobile platform that pays proper homage to a classic Collins radio.

Hopefully, these examples may help inspire those of you who love to hear the crackle of a handheld radio on the other end of the line.
who have considered blending a classic radio into your classic car. Think about it — the radio can help better define the life and times in which the restored car was designed to thrive.

Modern Classics?
So with the renewed interest in customs, classics, or resto-mods (old cars fitted with more reliable, higher performance, contemporary running gear) why not integrate ham radio as part of the effort? Unless maybe you’re running with open pipes, in which case your signal reports could be less than optimal.

Seriously, integrating a modern ham rig into a classic car couldn’t be easier than it is now. Most older cars had gobs of space available beneath the dash, in the trunk and in most cases, under the hood. Today’s solid-state rigs require a fraction of the space mobile gear needed in the days of tube-powered radios that required some rather exotic and space-devouring power supplies. You might even consider fitting a modern radio into the shell of an old classic radio box whose innards may have passed beyond the salvageable stage. Kind of a resto-mod approach to putting a classic radio in a classic car. That might be sacrilege to some purists but in today’s world, hey, just about anything goes.

And if you have a classic, email some photos to me and I’ll be glad to share them with our readers in a future column. Combining two great pastimes may sound like an interesting challenge. And why not?

The Disney/Pixar movie Cars (a must-see for any car nut or fan of the old Route 66) had a great line delivered by the character Sally, as she spoke of cruising Route 66 in the days prior to interstates, “Cars didn’t drive on it to make great time. They drove on it to have a great time.”

As we look ahead to spring and summer, may many miles of great times be in front of your windshield.

– Happy mobiling & 73, Jeff, AA6JR
Based on postings made to the Ping Jockey Central and the DX Maps websites, the Geminids meteor shower, which peaked on December 14th, MSK144 meteor scatter activity on the Magic Band was high. The Geminids are always a reliable shower and in some years the number of "rocks" entering the earth’s atmosphere reaches storm levels. However, there were no post-shower reports that would suggest that the shower reached storm levels this year. It seems that most operators had "gotten the memo" and had migrated to WSJT-X version 2.0 with its expanded protocol prior to the shower. See Figures 1 and 2 for snapshots of the meteor scatter activity on 50 MHz.

The winter sporadic-E (Es) season got off to a good start at the beginning of December with 6 meters open on the second on the east coast and again on the fifth, with the much of the Midwest and south participating in the opening. Most of the activity was FT8 on 50.313 MHz, but there was noticeable activity on SSB from 50.125 MHz up to 50.180 MHz. See Figures 3 and 4.

Noted solar physicist Jim Kennedy, KH6/K6MIO, published an interesting article in the winter 2018 edition of the German DUBUS magazine titled “Es Over Very Long Water Paths.” Kennedy explains the propagation mechanism in play during east-west 50-MHz band openings extending between 8,000 and 12,000 kilometers (~5,000 to 7,500 miles) during periods of very low solar activity—the current state of solar Cycle 24. Kennedy concludes that the extreme, mostly over-water, east-west paths, all on the same side of the equator, are possible during the local summer Es season during periods of low solar activity. Such was the case this past summer when North American 6-meter operators worked stations in Asia. The good news is that openings over those same paths will likely occur again in 2019 and perhaps 2020 as Cycle 24 comes to a close.

In Kennedy’s “November 2018 Solar Report” in the same edition of DUBUS, he notes that solar Cycle 24 appears to be “flattening out,” suggesting that the solar minimum is near. However, he also points out that because of the 12-month smoothing averaging process, the date of the solar minimum can only be determined six or more months after the fact.

Assuming that Cycle 25 will follow the pattern of previous solar cycles, solar activity will increase rather quickly, reaching 80% to 90% of the maximum value approximately three years after the Cycle 24 minimum. Kennedy notes that some solar observers are predicting a peak R12 value of 135. Though not great, a value of 135 would result in modest F2 openings. Add FT8 to the mix and it will be interesting to see the results in a few years.

2019 VHF Super Conference
In 2015, members of the Southeastern VHF Society, the North East Weak Signal Group and the Mt. Airy VHF Radio...
Club floated the idea of joint VHF conference to be held at a mutually convenient location within a few hours’ drive of their respective members. The idea was realized in April 2016 when the first VHF Super Conference was held in Sterling, Virginia, outside Washington, DC. Well over 200 VHF / UHF / microwave enthusiasts were in attendance and it was resounding success by any measure.

Anyone who has been part of a club or team that has sponsored a conference knows the amount planning and hard work required for a successful conference. There can be considerable financial risk as well as hotels requiring a contract guaranteeing some number of room nights, and most have an additional requirement to spend some dollar amount on food and beverage onsite during the event. There are other considerations that are important to the conference hosts, including adequate space for the antenna range, spacious meeting rooms for conference presentations and vendor displays, and the ever-popular hospitality suite.

This year’s VHF Super Conference will again be sponsored by Southeastern VHF Society, North East Weak Signal Group, and the Mt. Airy VHF Radio Club and will be held April 26th – 28th 2019 at the Holiday Inn Washington-Dulles International Airport, 45425 Holiday Drive, Sterling, Virginia. See <https://vhfsuperconference.com> for conference details including hotel booking information and the schedule of events.

Like the first VHF Super Conference, the hotel is expected to sell out, so if you’re planning to attend, make your room reservations sooner rather than later. You might also consider arriving a day early in order to visit the Steven F. Udvar-Hazy Center, the Smithsonian National Air & Space Museum’s annex at Washington Dulles International Airport, minutes away from the conference hotel. Its numerous exhibits include the Space Shuttle Discovery, the Enola Gay (the Boeing B-29 Superfortress that dropped the first atom ic bomb) and a Lockheed SR-71 Blackbird reconnaissance aircraft, to name a few of the more popular ones.

As of this writing, the date and time for the VHF / UHF / microwave forum at the Hamvention® in Xenia, Ohio have yet to be determined. If you are interesting in presenting, please contact me with the topic you would like to present. A petition to increase the amount of time allocated for the forum, signed by many who attended last year, has been submitted to the Hamvention forum committee. Hopefully, the committee will see fit to increase the allocated time slot from one and a half hours to at least 2 hours.

Figure 2. Geminids activity picked up on Friday morning, December 14. This DX Maps file is from 1424 UTC. Most activity used the MSK144 digital mode.

Figure 3. Wintertime sporadic-E made its first appearance on 6 meters around midday on Sunday, December 2. Most of the activity was in the eastern half of the U.S. (Map courtesy DX Maps)
Recently, Bill Mitchell, AEØEE, announced on the HamSci reflector that an APRS propagation project that he developed, called aprsdb, has been released. aprsdb is a tool for storing and analyzing APRS data without reliance on internet infrastructure. All the data collection and analysis is entirely local. See: <http://github.com/wsmitchell3/aprsdb>. Bill noted on his website that the project was inspired by Jon Harder, NGØE, of the Mountain Lake APRS website — more commonly referred to as the VHF Propagation Map and home of the “big red blob” when conditions are up.

Regular users of the Mountain Lake APRS website noticed that the site was offline for a while in 2018 as policy changes made by Google regarding the cost of using Google Maps was increased beyond the scope of most hobbists or non-commercial users. Fortunately, an alternative was identified, modifications were made and the site is back online. The Mountain Lake APRS, DX Maps, ON4KST, Ping Jockey, and other sites enhance our enjoyment of amateur radio. Those behind the scenes donate their time and resources in a labor of love, hoping to contribute in some small way to the advancement of amateur radio. You can help offset the cost of maintaining your favorite site by making a small donation — it will be appreciated and will help ensure the long-term viability of your favorite site(s).

– 73 and CU on the bands, Tony, K8ZR

Notes:
1. DUBUS magazine. Joachim Kraft, Publisher. Hamburg, Germany. Pages 34-41
2. Ibid. page 105.
3. Ibid. page 105.
4. Relative sunspot numbers are designated R (International.)
While we continue our search for a successor to K1BV as Awards Editor, we’ll use the opportunity to shine a spotlight on CQ’s own operating awards, some of which are very well-known, such as USA-CA (the USA Counties Award) and WAZ (Worked All Zones), and others of which don’t always grab as much attention. We’ll start this month with one of those — several, actually — the CQ DX Awards.

-W2VU

At first glance, the CQ DX Award might seem like a clone of the ARRL’s DXCC award, since the basic level entails making confirmed contacts with 100 different DX entities. But there are differences and, in some ways, the CQ DX Award is more difficult to earn than basic DXCC.

To start, there is no mixed-mode version of the CQ DX Award. You need to confirm contacts with stations in at least 100 DX entities in either SSB, CW, or RTTY, and there are separate awards for each mode.

The many endorsements available for the CQ DX Award, for various bands, power levels, less-common operating modes (e.g., SSTV and satellite), and mobile or remote station operation. In addition, stations with credit for at least 275 active countries qualify for the CQ DX Honor Roll, a singular distinction.

Confirmations for the CQ DX Award are accepted in the form of traditional QSL cards or eQSL.cc electronic confirmations. As of now, we are not permitted to accept ARRL Logbook of the World credits for the CQ DX Award.

Complete details are in the rules, which are reproduced here and available on the CQ website at <https://tinyurl.com/y9rkdrdk>.

Next time, we’ll check in on the CQ DX Field Award, which provides you with “wallpaper” for contacting at least 50 of the world’s 324 10° x 20° “grid fields” … a task which isn’t as easy as it sounds, since many fields are all or nearly-all water!

Complete Rules: CQ DX Award and the CQ DX Honor Roll

CQ DX Award

1. The CQ DX Award is issued in three categories. The CQ DX CW Award is issued to an amateur radio station submitting proof of contact with 100 or more countries. The CQ DX SSB Award is issued to an amateur radio station submitting proof of contact with 100 or more countries. The CQ DX RTTY Award is issued to an amateur radio station submitting proof of contact with 100 countries using two-way RTTY. Applications should be submitted on the official CQ DX Award application (form 1067B). Reasonable facsimiles or computer printouts are also acceptable.

2. All contacts must be two-way in the mode for which the application is made. Cross-mode or one-way contacts are not valid. QSLs must be listed in alphanumeric order (A to Z and 1 to 9) by prefix. All contacts must have been made after November 15, 1945. Deleted countries do not count. Only currently active countries are acceptable.

3. QSL cards must be verified by one of the authorized checkpoints for the CQ DX Awards, or must be included with the application. Return postage must be included. Electronic verifications from sources approved by CQ are acceptable. See the CQ website for acceptable online sources.

4. Country endorsement stickers are issued for 150, 200, 250, 275, 300, 310, and 320 active countries. A fee of $1.00 per sticker (where stickers are issued) is charged. An SASE must be enclosed with all endorsement applications.

5. Special endorsements, as follows, are available for a fee of $1.00 each:
 a. 28 MHz endorsement - for 100 or more countries confirmed in the 10-meter band.
 b. 3.5/7 MHz endorsement - for 100 or more countries confirmed using any combination of the 40- and 80-meter bands.
 c. 1.8 MHz endorsement - for 50 or more countries confirmed using the 160-meter band.
 d. QRPp endorsement - for 50 or more countries confirmed using 5 watts output or less.
 e. Mobile endorsement - for 50 or more countries confirmed with the applicant operating mobile.
 f. Slow Scan TV endorsement - for 50 or more countries confirmed using two-way SSTV.
 g. OSCAR endorsement - for 50 or more countries confirmed via amateur satellite.
 h. Remote operation endorsement - for 100 or more confirmed countries of which one or more qualifying contact was made using remote station technology (operator is not physically present at the station location). All applications including contacts made using remote station technology must...
include this endorsement. Qualifying contacts may be made on or after January 1, 2015.

i. All-Remote operation endorsement - for 100 or more confirmed countries of which all qualifying contacts were made using remote station technology (operator is not physically present at the station location). Qualifying contacts may be made on or after January 1, 2015.

6. Any altered or forged confirmations will result in permanent disqualification of the applicant.

7. Fair play and good sportsmanship in operating are required for all amateurs working toward CQ DX Awards. Continued use of poor ethics will result in disqualification of the applicant.

8. A fee of $6.00 is required for CQ subscribers applying for a CQ DX Award certificate. The latest CQ mailing label must be attached for the subscriber discount. For non-subscribers the certificate fee is $12.00. IRCs are acceptable in lieu of check or cash.

9. Normally the ARRL DXCC country list constitutes the basis for CQ DX Award country status. Deleted countries are not valid for the CQ DX Award. As a country is deleted, country totals of applicants are automatically adjusted accordingly.

10. All contacts must be with land-based amateur stations working within authorized amateur bands. Contacts with ships and aircraft are not acceptable.

11. Decisions of the CQ DX Awards Manager shall be final.

THE CQ DX Honor Roll

12. The CQ DX Honor Roll lists all stations with a total of 275 or more active countries.

13. Separate Honor Rolls are maintained for SSB and CW. To remain on the Honor Roll, a station must update his or her totals at least once per year. Updates indicating “no change” are acceptable to meet this requirement. An SASE must be included with all updates in order to receive confirmation of total.

14. An audit sheet showing countries needed by an Honor Roll member is available for $3.00 plus an SASE for each mode. These are available from the CQ DX Award Manager.

15. All checks must be made payable to Keith Gilbertson. Applications should be sent to Keith Gilbertson, K0KG, CQ DX Awards Manager, 21688 Sandy Beach Lane, Rochert, MN 56578-9604 USA.
The Most-Wanted Countries … and Why

The top 25 most-wanted DX entities from Club Log, as of November 15, 2018, are listed in Table 1. For me, it seems quite strange to see some of these here, for a number of reasons. I would have thought they would have been further down. Some, such as Midway, Desecheo, South Sandwich, and Palmyra had been activated fairly recently by large operations. Others just haven’t been on the air lately, such as Peter I, Aves, St. Peter & Paul Rocks, and Turkmenistan. And some, such as Mount Athos, Macquarie, and Marion Island, are on the air but being activated by solo operators. Let’s look at the top 10 a little more carefully.

1. North Korea being in the #1 slot is pretty obvious. There have only been three operations from DPRK and two were quite small. The largest was P5/L44FN, who made 16,415 QSOs from November 9, 2001 through November 21, 2002. Two previous authorized amateur stations were reported as P5/OH2AM on May 14, 1995, with 20 QSOs, and one of the few, specifically North Korean callsigns of P51BH (OH2BH) on April 21, 1999. The latter did an amateur radio demonstration for North Korean officials with 263 QSOs. P5RST, in 1992, ended up to not be in North Korea and was disallowed by the DXCC program. A few other pirate or unauthorized activities have occurred over the years. The bottom line is that P5 has not been on the air since 2002 and overall, only about 16,500 QSOs have ever been made. With the current situation over there, I would not hold my breath waiting for this one to come on the air.

2. Bouvet Island. I guess we don’t have to dig very deep on this one, either. However, there have actually been quite a few QSOs made with Bouvet over the years. The first was LH4C by W4BPD in 1962 (no documented landing), followed by 3Y3CC and 3Y1VC in 1977 (50 QSOs), 3Y5DO and 3Y1VC in 1979 (2,000 QSOs), 3Y5X in 1989-1990 (50,000 QSOs), 3Y2GV in 1997 (3 hours only), 3Y0C by N4BQW in 2000-2001 (3,351 QSOs), and 3Y0E by ZS6GCM in 2008 (1,500 QSOs). So, if you add them up, it comes to about 57,000 QSOs since 1977. The bulk were made by 3Y5X in 1989-1990. So, the biggest reason Bouvet is so rare is that it hasn’t seen a major operation for nearly 30 years. Unfortunately, the recent attempt by the 3Y0Z team had to be aborted. Had they been successful, Bouvet would not be in the top 25 right now. We shall see if the current plan to activate Bouvet (3Y0I) is fruitful. We may even know before this column gets published.

3. Crozet Island. This one has never seen a dedicated DXpedition team. The only activity has been by ham scientists living on the island, although over the years, some have mounted a valiant effort to work many DXers. But many things have changed this since there have been fewer assigned military and scientific personnel going to Crozet and other similar islands as well. I have no real statistics on how many QSOs have been made from Crozet over the years. I happen to be the QSL Manager for FB8WJ from the early 1980s. I took over for the previous QSL Manager who became a SK. It is a large paper log maybe 3 inches thick. There have been attempts to activate Crozet but permission has not been possible. The island of Crozet is the most protected of all the French islands in the perimeter of the Prefecture of the French Southern and Antarctic Lands (TAAF in French). It has always been the subject of special attention and has a relatively low rate of invasive alien animal or plant species. This makes it particularly sensitive to any new introduction. The scientific base is relatively small compared to the other Southern Islands and has a very high concentration of seabirds sensitive to disturbance nearby. On the positive side is that other relatively recent DXpeditions have been warmly received by TAAF so this might leave the door open a crack for a future DXpedition to Crozet. It just might not be as large as some from other TAAF territories. Patience is required to let those with the closest relationship with TAAF continue to work on this one. But who knows? Maybe another ham radio scientist will do a tour of duty on Crozet someday.

4. Scarborough Reef. My personal belief is that of all the entities on the list, this one just might end up being the most difficult to activate. The political situation in this area of the South China Sea is just too intense. Permission is required, for sure, but the two countries claiming the reef (China and the Philippines) haven’t been happy about the issues around this place, which is mostly a submerged reef with only a handful of rocks emerging from the water. Setting up radios on the rocks is quite a challenge. Amateur radio activity has included: 1994 (did not qualify), 1995 (11,835 QSOs), 1997

Table 1. Club Log’s Top 25 Most-Wanted Countries, as of November 15, 2018.

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Country/Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>P5</td>
<td>DPRK (North Korea)</td>
</tr>
<tr>
<td>2.</td>
<td>3Y/B</td>
<td>Bouvet Island</td>
</tr>
<tr>
<td>3.</td>
<td>FT5/W</td>
<td>Crozet Island</td>
</tr>
<tr>
<td>4.</td>
<td>BS7H</td>
<td>Scarborough Reef</td>
</tr>
<tr>
<td>5.</td>
<td>CE0X</td>
<td>San Felix Islands</td>
</tr>
<tr>
<td>6.</td>
<td>BV9P</td>
<td>Pratas Island</td>
</tr>
<tr>
<td>7.</td>
<td>KH7K</td>
<td>Kure Island</td>
</tr>
<tr>
<td>8.</td>
<td>KH3</td>
<td>Johnston Island</td>
</tr>
<tr>
<td>9.</td>
<td>VK0M</td>
<td>Macquarie Island</td>
</tr>
<tr>
<td>10.</td>
<td>FT5/X</td>
<td>Kerguelen Island</td>
</tr>
<tr>
<td>11.</td>
<td>3Y/P</td>
<td>Peter I Island</td>
</tr>
<tr>
<td>12.</td>
<td>FT/G</td>
<td>Glorioso Island</td>
</tr>
<tr>
<td>13.</td>
<td>YV0</td>
<td>Aves Island</td>
</tr>
<tr>
<td>14.</td>
<td>KH4</td>
<td>Midway Island</td>
</tr>
<tr>
<td>15.</td>
<td>ZS8</td>
<td>Prince Edward & Marion Islands</td>
</tr>
<tr>
<td>16.</td>
<td>VP8O</td>
<td>South Orkney Islands</td>
</tr>
<tr>
<td>17.</td>
<td>PY0T</td>
<td>Trinidad & Martim Vaz Islands</td>
</tr>
<tr>
<td>18.</td>
<td>PY0S</td>
<td>Saint Peter and Paul Rocks</td>
</tr>
<tr>
<td>19.</td>
<td>KP5</td>
<td>Desecheo Island</td>
</tr>
<tr>
<td>20.</td>
<td>SV/A</td>
<td>Mount Athos</td>
</tr>
<tr>
<td>21.</td>
<td>VP8S</td>
<td>South Sandwich Islands</td>
</tr>
<tr>
<td>22.</td>
<td>EZ</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>23.</td>
<td>KH1</td>
<td>Baker & Howland Islands</td>
</tr>
<tr>
<td>24.</td>
<td>JD/M</td>
<td>Minami Toriushima</td>
</tr>
<tr>
<td>25.</td>
<td>KH5</td>
<td>Palmyra & Jarvis Islands</td>
</tr>
</tbody>
</table>

*Email: <n2oo@comcast.net>
Young hams throughout Region 1 of the International Amateur Radio Union (IARU), which covers Europe, Africa, and the Middle East, got on the air during December for YOTA (Youngsters On The Air) Month. American hams Ken Claerbout, K4ZW, and Bob Johnson, W9XY, visited Ethiopia in December and helped the young operators at club station ET3AA (operating as ET3YOTA) at the Addis Ababa Institute of Technology with some antenna work and pileup tips.

December 2018 was designated as YOTA (Youngsters On The Air) Month in Europe, the Middle East, and Africa by Region 1 of the International Amateur Radio Union (IARU).

Bob Johnson, W9XY, visiting Ethiopia, provides some pileup-handling pointers to students at Addis Ababa Institute of Technology club station ET3AA during their “Youngsters On The Air” (YOTA) activity in December as ET3YOTA. (Photo by K4ZW)

The new low-band antenna installed at ET3AA (ET3YOTA) by recent visitors Ken Claerbout, K4ZW, and Bob Johnson, W9XY. (Photo by K4ZW)
(13,154 QSOs) and 2007 (45,830 QSOs). So, 70,819 QSOs were made by the three activations that counted.

5. San Felix. I can’t easily give you many QSO totals for this one. The first activation was by CEØXA in 1965. Others occurred in 1972, 1984 (31,000 QSOs), 1990, 2000, and 2002 (68,910 QSOs). No other activations have occurred since. There was an attempted activation in 2016-2017 that failed due to an issue of some sort with the Chilean Navy. I do not know any other particular. But situations like this never seem to help activate a rare entity. We must always work politely and with great care when seeking permission to operate anywhere. Since San Felix consists of four islands (Desventuradas Islands) with San Felix itself being the only one with a presence (military air strip), it may be hopeful for a team to get permission to activate one of the uninhabited islands. Actually the 1990 and 2000 operations were from San Ambrosio Island, which is actually the largest island in the group.

6. Pratas Island. This Taiwanese outpost is also known as Dongsha Island. I was fortunate enough to have been on the last DXpedition to activate the island in 2003 as B29P. At that time, it was administered by Taiwanese Marines. In 2007, the island was declared part of the Dongsha Atoll National Park managed by the Ministry of the Interior. Paul Pai, BV4FH, was instrumental in getting permission to operate from Pratas for many years due to his military contacts in Taiwan. However, Paul became a Silent Key in 2012. Many QSO totals for this one. The first activation was by CEØXA in 1965. Others occurred in 1972, 1984 (31,000 QSOs) and 2007 (45,830 QSOs). So, 70,819 QSOs were made by the three activations that counted.

5. San Felix. I can’t easily give you many QSO totals for this one. The first activation was by CEØXA in 1965. Others occurred in 1972, 1984 (31,000 QSOs), 1990, 2000, and 2002 (68,910 QSOs). No other activations have occurred since. There was an attempted activation in 2016-2017 that failed due to an issue of some sort with the Chilean Navy. I do not know any other particular. But situations like this never seem to help activate a rare entity. We must always work politely and with great care when seeking permission to operate anywhere. Since San Felix consists of four islands (Desventuradas Islands) with San Felix itself being the only one with a presence (military air strip), it may be hopeful for a team to get permission to activate one of the uninhabited islands. Actually the 1990 and 2000 operations were from San Ambrosio Island, which is actually the largest island in the group.

6. Pratas Island. This Taiwanese outpost is also known as Dongsha Island. I was fortunate enough to have been on the last DXpedition to activate the island in 2003 as B29P. At that time, it was administered by Taiwanese Marines. In 2007, the island was declared part of the Dongsha Atoll National Park managed by the Ministry of the Interior. Paul Pai, BV4FH, was instrumental in getting permission to operate from Pratas for many years due to his military contacts in Taiwan. However, Paul became a Silent Key in 2012. Many QSO totals for this one. The first activation was by CEØXA in 1965. Others occurred in 1972, 1984 (31,000 QSOs) and 2007 (45,830 QSOs). So, 70,819 QSOs were made by the three activations that counted.

5. San Felix. I can’t easily give you many QSO totals for this one. The first activation was by CEØXA in 1965. Others occurred in 1972, 1984 (31,000 QSOs), 1990, 2000, and 2002 (68,910 QSOs). No other activations have occurred since. There was an attempted activation in 2016-2017 that failed due to an issue of some sort with the Chilean Navy. I do not know any other particular. But situations like this never seem to help activate a rare entity. We must always work politely and with great care when seeking permission to operate anywhere. Since San Felix consists of four islands (Desventuradas Islands) with San Felix itself being the only one with a presence (military air strip), it may be hopeful for a team to get permission to activate one of the uninhabited islands. Actually the 1990 and 2000 operations were from San Ambrosio Island, which is actually the largest island in the group.

6. Pratas Island. This Taiwanese outpost is also known as Dongsha Island. I was fortunate enough to have been on the last DXpedition to activate the island in 2003 as B29P. At that time, it was administered by Taiwanese Marines. In 2007, the island was declared part of the Dongsha Atoll National Park managed by the Ministry of the Interior. Paul Pai, BV4FH, was instrumental in getting permission to operate from Pratas for many years due to his military contacts in Taiwan. However, Paul became a Silent Key in 2012. Many QSO totals for this one. The first activation was by CEØXA in 1965. Others occurred in 1972, 1984 (31,000 QSOs) and 2007 (45,830 QSOs). So, 70,819 QSOs were made by the three activations that counted.

5. San Felix. I can’t easily give you many QSO totals for this one. The first activation was by CEØXA in 1965. Others occurred in 1972, 1984 (31,000 QSOs), 1990, 2000, and 2002 (68,910 QSOs). No other activations have occurred since. There was an attempted activation in 2016-2017 that failed due to an issue of some sort with the Chilean Navy. I do not know any other particular. But situations like this never seem to help activate a rare entity. We must always work politely and with great care when seeking permission to operate anywhere. Since San Felix consists of four islands (Desventuradas Islands) with San Felix itself being the only one with a presence (military air strip), it may be hopeful for a team to get permission to activate one of the uninhabited islands. Actually the 1990 and 2000 operations were from San Ambrosio Island, which is actually the largest island in the group.

6. Pratas Island. This Taiwanese outpost is also known as Dongsha Island. I was fortunate enough to have been on the last DXpedition to activate the island in 2003 as B29P. At that time, it was administered by Taiwanese Marines. In 2007, the island was declared part of the Dongsha Atoll National Park managed by the Ministry of the Interior. Paul Pai, BV4FH, was instrumental in getting permission to operate from Pratas for many years due to his military contacts in Taiwan. However, Paul became a Silent Key in 2012. Many QSO totals for this one. The first activation was by CEØXA in 1965. Others occurred in 1972, 1984 (31,000 QSOs) and 2007 (45,830 QSOs). So, 70,819 QSOs were made by the three activations that counted.

5. San Felix. I can’t easily give you many QSO totals for this one. The first activation was by CEØXA in 1965. Others occurred in 1972, 1984 (31,000 QSOs), 1990, 2000, and 2002 (68,910 QSOs). No other activations have occurred since. There was an attempted activation in 2016-2017 that failed due to an issue of some sort with the Chilean Navy. I do not know any other particular. But situations like this never seem to help activate a rare entity. We must always work politely and with great care when seeking permission to operate anywhere. Since San Felix consists of four islands (Desventuradas Islands) with San Felix itself being the only one with a presence (military air strip), it may be hopeful for a team to get permission to activate one of the uninhabited islands. Actually the 1990 and 2000 operations were from San Ambrosio Island, which is actually the largest island in the group.

6. Pratas Island. This Taiwanese outpost is also known as Dongsha Island. I was fortunate enough to have been on the last DXpedition to activate the island in 2003 as B29P. At that time, it was administered by Taiwanese Marines. In 2007, the island was declared part of the Dongsha Atoll National Park managed by the Ministry of the Interior. Paul Pai, BV4FH, was instrumental in getting permission to operate from Pratas for many years due to his military contacts in Taiwan. However, Paul became a Silent Key in 2012. Many QSO totals for this one. The first activation was by CEØXA in 1965. Others occurred in 1972, 1984 (31,000 QSOs) and 2007 (45,830 QSOs). So, 70,819 QSOs were made by the three activations that counted.

5. San Felix. I can’t easily give you many QSO totals for this one. The first activation was by CEØXA in 1965. Others occurred in 1972, 1984 (31,000 QSOs), 1990, 2000, and 2002 (68,910 QSOs). No other activations have occurred since. There was an attempted activation in 2016-2017 that failed due to an issue of some sort with the Chilean Navy. I do not know any other particular. But situations like this never seem to help activate a rare entity. We must always work politely and with great care when seeking permission to operate anywhere. Since San Felix consists of four islands (Desventuradas Islands) with San Felix itself being the only one with a presence (military air strip), it may be hopeful for a team to get permission to activate one of the uninhabited islands. Actually the 1990 and 2000 operations were from San Ambrosio Island, which is actually the largest island in the group.
people who tagged along. My hope is that a friendlier atmosphere will exist in the future.

8. Johnston Island. I don’t know of any current proposed activation of Johnston Island. Johnston Atoll is a national wildlife refuge and is closed to public entry. Limited access for management needs is only by letter of authorization from the U.S. Air Force and Special Use Permit from the U.S. Fish and Wildlife Service. For nearly 70 years, the atom bomb testing program ran out of the Alfred Faure scientific station or occasional short-term visitors to the base. It seems that TAAF may be more prone to allowing a moderate DXpedition here at some point in the future. But it is extremely difficult to access due to its remote location in the Southern Indian Ocean and its limited space and resources.

So, there you have it. A quick look at the top 10 entities as noted on the Club Log Most Wanted List using the "No Mode Filter," “All bands” and “Global Log settings.” See <https://clublog.org/mostwanted.php> for the complete list.

Now, it’s time to call another CQ on 30-meter FT8! See ya’ in the Pileups!

73 de N2OO
CONTESTING
BY DAVID SIDDALL, * K3ZJ

Realtime Contest Scoreboards on the Web

Plus: CQ Contest Hall of Fame Nominations; CQ WPX RTTY Contest; CQWW 160-Meter Phone Contest; ARRL DX CW and Phone Contests

Whether competing at full bore or in casual mode, contest operators increasingly are trying online contest scoreboards. Competitors configure their logging software to automatically report their score information to a server on the web, where it can be viewed in an organized fashion by fellow competitors. Many users report that using online scoreboards adds to their fun. This month we describe scoreboards and their functionalities.

But first, please note that nominations for the CQ Contest Hall of Fame must be received no later than March 1, as discussed in earlier columns. A maximum of two (2) people will be inducted at the annual Contest Dinner on May 19 during the Dayton Hamvention®. If you know of someone who deserves this honor, consult the nomination instructions that are at <https://tinyurl.com/hzj4yv9>.

February signals the beginning of a major contest run. Four major contests are held on four consecutive weekends: CQ WPX RTTY, ARRL DX CW, CQWW 160 SSB, and ARRL DX Phone. More follow these in March.

Newer digital modes, such as FT8, are very popular and drawing new hams onto the air and into contesting. But more contacts-per-hour can be made using “old-fashioned” RTTY, reborn using computers instead of Model 19s and 28s from old Western Union offices. So we expect a big turnout on the bands for this year’s annual CQ WPX RTTY contest on the weekend of February 9-10.

The ARRL DX CW Contest will follow the CQ WPX RTTY contest, taking place on the weekend of February 16-17. Of note is that this contest is the first qualifying event on the road to WRTC 2022 in Italy.

Newer digital modes, such as FT8, are very popular and drawing new hams onto the air and into contesting. But more contacts-per-hour can be made using “old-fashioned” RTTY, reborn using computers instead of Model 19s and 28s from old Western Union offices. So we expect a big turnout on the bands for this year’s annual CQ WPX RTTY contest on the weekend of February 9-10.

The ARRL DX CW Contest will follow the CQ WPX RTTY contest, taking place on the weekend of February 16-17. Of note is that this contest is the first qualifying event on the road to WRTC 2022 in Italy.

The ARRL DX CW Contest will follow the CQ WPX RTTY contest, taking place on the weekend of February 16-17. Of note is that this contest is the first qualifying event on the road to WRTC 2022 in Italy.

The SSB portion of the CQWW 160-meter contest will begin at 2200 UTC on Friday, February 22, and run through 2159 UTC on Sunday, February 24. With top band DXers reporting generally excellent conditions, this year hopes are high for favorable propagation during the contest.

The ARRL DX Phone Contest follows on the next weekend, March 2-3. This will be the second qualifying contest for WRTC 2022.

Below we discuss the ARRL DX contests, then explore realtime contest scoreboards.

ARRL DX CW and SSB Contests

The annual ARRL CW DX contest will open at 0000 UTC on February 16 and close at 2359 UTC on February 17. Electronic log submissions must be made over the internet and completed no later than 2359 UTC on Sunday, February 24. The ARRL Phone DX Contest similarly will begin at 0000 UTC on March 2 and run through 2359 UTC on March 3, with electronic log submissions due no later than 2359 UTC on Sunday, March 10.

The ARRL DX contests offer U.S. and Canadian stations a welcome opportunity to be sought after, because the format is that stations worldwide work only stations located in the 48 contiguous U.S. states and Canada. Low-power and antenna-challenged stations in the U.S. and Canada therefore can work the DX stations with relatively greater ease than in contests in which “the world works the world.” Especially on 40, 80, and 160 meters, the two ARRL DX Contest weekends bring lots of DX into the logs of smaller stations.

This year, the ARRL log deadlines have been lengthened to seven (7) days after the end of the contest. The deadlines are noted above. The link at which to submit all ARRL contest logs is at <https://contest-log-submission.arrl.org>.

The rules governing the ARRL DX contest differ somewhat from those of the CQWW DX contests. Serious competitors therefore should be sure to read the rules of each different contest. The rules that govern the ARRL DX contests are in three different documents. Combined, they constitute the

Figure 1. The home page of the original scoreboard, getscores.org, created by Gerry Hull, W1VE, in 2006. The CQWW contests in 2006 were the proving grounds for Gerry’s first real-time scoreboard. Scores were periodically sent over the internet directly from competitors’ logs and displayed on an open website. Both of today’s scoreboards use the same concepts. (Courtesy of W1VE)
Calendar of Events

<table>
<thead>
<tr>
<th>Event Date</th>
<th>Event Name</th>
<th>Website Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All year</td>
<td>CQ DX Marathon</td>
<td>http://bit.ly/vEKMWD</td>
</tr>
<tr>
<td>Feb. 2</td>
<td>FISTS Winter Slow Speed Sprint</td>
<td>www.fistsna.org/operating.html</td>
</tr>
<tr>
<td>Feb. 2</td>
<td>AGCW Straight Key Party</td>
<td>http://bit.ly/1jKUszA</td>
</tr>
<tr>
<td>Feb. 2</td>
<td>Minnesota QSO Party</td>
<td>www.w0aa.org/index.php/rules</td>
</tr>
<tr>
<td>Feb. 2-3</td>
<td>Vermont QSO Party</td>
<td>www.ranv.org/ranv.html</td>
</tr>
<tr>
<td>Feb. 6</td>
<td>UKEICC 80m Contests SSB</td>
<td>http://bit.ly/2c9V7yF</td>
</tr>
<tr>
<td>Feb. 9-10</td>
<td>CQWW RTTY WPX Contest</td>
<td>www.cqwwrtty.com</td>
</tr>
<tr>
<td>Feb. 9</td>
<td>RSFS 1ST 1.8 MHZ Contest CW</td>
<td>http://bit.ly/1BcOsSx</td>
</tr>
<tr>
<td>Feb. 9</td>
<td>Asia-Pacific Spring Sprint (CW)</td>
<td>http://www.fistsna.org/operating.html</td>
</tr>
<tr>
<td>Feb. 9</td>
<td>FISTS Winter unlimited Sprint</td>
<td>http://ncjweb.com/north-american-sprint/</td>
</tr>
<tr>
<td>Feb. 9-10</td>
<td>Dutch PACQ Contest</td>
<td>http://tinyurl.com/8d2ebk</td>
</tr>
<tr>
<td>Feb. 9-10</td>
<td>SARL Field Day Contest</td>
<td>http://ncjweb.com/naqc</td>
</tr>
<tr>
<td>Feb. 10</td>
<td>QCW Winter QSO Party</td>
<td>www.highspeedclub.org</td>
</tr>
<tr>
<td>Feb. 11-15</td>
<td>ARRL School Club Roundup</td>
<td>http://bit.ly/1Xay1Lx</td>
</tr>
<tr>
<td>Feb. 11</td>
<td>PODSX Valentine Sprint</td>
<td>http://bit.ly/1TPr8Ltx</td>
</tr>
<tr>
<td>Feb. 13-17</td>
<td>ARRL CW DX Contest</td>
<td>www.arrl.org/arrl-dx</td>
</tr>
<tr>
<td>Feb. 16</td>
<td>Dutch PACQ Contest</td>
<td>http://tinyurl.com/8d2ebk</td>
</tr>
<tr>
<td>Feb. 16</td>
<td>SARL Field Day Contest</td>
<td>http://ncjweb.com/naqc</td>
</tr>
<tr>
<td>Feb. 16-17</td>
<td>North American RTTY QSO Party</td>
<td>www.highspeedclub.org</td>
</tr>
<tr>
<td>Feb. 27</td>
<td>UKEICC 80m Contests SSB</td>
<td>http://bit.ly/1tQdE9</td>
</tr>
<tr>
<td>Mar. 2-10</td>
<td>Novice Rig Round-Up</td>
<td>http://novicerigroundup.com</td>
</tr>
<tr>
<td>Mar. 2-3</td>
<td>ARRL SSB DX Contest</td>
<td>www.arrl.org/arrl-dx</td>
</tr>
<tr>
<td>Mar. 2-3</td>
<td>Veron SLP Contest</td>
<td>http://tinyurl.com/17emhpqz</td>
</tr>
<tr>
<td>Mar. 3</td>
<td>SARL Hamlet 40M Simulated Emergency Contest</td>
<td>http://bit.ly/1H0lqQf</td>
</tr>
<tr>
<td>Mar. 3</td>
<td>UBA Spring Contest 80m CW</td>
<td>http://bit.ly/1K Петр b9</td>
</tr>
<tr>
<td>Mar. 5</td>
<td>UKEICC 80m Contests SSB</td>
<td>http://bit.ly/1tQdE9</td>
</tr>
<tr>
<td>Mar. 9</td>
<td>AGCW QRP Contest</td>
<td>http://bit.ly/1tQdE9</td>
</tr>
<tr>
<td>Mar. 9</td>
<td>QRP ARC Spring Thaw SSB Sprint</td>
<td>www.qrparc.org/contests</td>
</tr>
<tr>
<td>Mar. 9-10</td>
<td>EA PSK63 Contest</td>
<td>http://concursoes.ure.es/en/eapsk63/bases</td>
</tr>
<tr>
<td>Mar. 9-10</td>
<td>Idaho QSO Party</td>
<td>www.idahoarrl.info/qsoparty/rules.htm</td>
</tr>
<tr>
<td>Mar. 9-10</td>
<td>Oklahoma QSO Party</td>
<td>http://K5Ccm.com/okalp.htm</td>
</tr>
<tr>
<td>Mar. 9-10</td>
<td>QCW QSO Party</td>
<td>www.qcw.org/qcw.php</td>
</tr>
<tr>
<td>Mar. 9-10</td>
<td>RSGB Commonwealth CW Contest</td>
<td>http://bit.ly/1tQdE9</td>
</tr>
<tr>
<td>Mar. 9-10</td>
<td>Stew Perry Topband Challenge</td>
<td>www.kkn.net/stew</td>
</tr>
<tr>
<td>Mar. 9-10</td>
<td>FIRAFC HF Contest</td>
<td>www.firac.de/html/contest.html</td>
</tr>
<tr>
<td>Mar. 9-10</td>
<td>South America 10 Meter Contest</td>
<td>www.sas10m.com.ar/index.html</td>
</tr>
<tr>
<td>Mar. 9-10</td>
<td>Tesla memorial HF CW Contest</td>
<td>https://tinyurl.com/yano4dj4</td>
</tr>
<tr>
<td>Mar. 10</td>
<td>UBA Spring Contest -2m CW/Phone</td>
<td>http://bit.ly/1tQdE9</td>
</tr>
<tr>
<td>Mar. 16-17</td>
<td>AWA John Rollins Memorial DX Contest</td>
<td>http://bit.ly/1tQdE9</td>
</tr>
<tr>
<td>Mar. 16-17</td>
<td>Louisiana QSO Party</td>
<td>http://bit.ly/1tQdE9</td>
</tr>
<tr>
<td>Mar. 16-17</td>
<td>Russian DX Contest</td>
<td>www.vbxc.org/asp/pages/rulesg.asp</td>
</tr>
<tr>
<td>Mar. 16-18</td>
<td>BARTG HF RTTY Contest</td>
<td>http://bit.ly/1tQdE9</td>
</tr>
<tr>
<td>Mar. 17</td>
<td>UBA Spring Contest 80m SSB</td>
<td>www.g4fcoc.org/qsoparty/</td>
</tr>
<tr>
<td>Mar. 24</td>
<td>UBA Spring Contest 6m CW/Phone</td>
<td>http://bit.ly/1tQdE9</td>
</tr>
<tr>
<td>Mar. 27</td>
<td>UKEICC 80m Contests CW</td>
<td>http://bit.ly/1tQdE9</td>
</tr>
<tr>
<td>Mar. 30-31</td>
<td>CQWW WPX SSB Contest</td>
<td>www.cqwwpx.com/</td>
</tr>
<tr>
<td>May 25-26</td>
<td>CQWW WPX CW CONTEST</td>
<td>www.cqwwpx.com/</td>
</tr>
</tbody>
</table>
“contest rules.” The three documents are the General Rules for All ARRL Contests <https://tinyurl.com/7emtjzh>; General Rules for ARRL Contests Below 30 MHz <https://tinyurl.com/yadgbay4>; and Rules for the ARRL DX Contest <www.arrl.org/arrl-dx>.

In addition to the different periods between the end of the contest and the log submission deadline, the ARRL contests allow single operators in all categories to review band breakdown information on the live scoreboards, as noted below. Another difference in the contest rules relates to provision of non-operating assistance. This includes such things as help swapping out an amplifier or fixing an antenna during the contest period. Such help is not permitted for single operators in ARRL HF contests. (See section 2.1 of General Rules for ARRL Contests Below 30 MHz.)

Permitted power is another area of difference. Up to 150 watts is permitted in low power categories in the ARRL DX contests (not 100 watts). Note also that there are no power sub-categories for single-band, two-transmitter, and multi-transmitter entries. All of those entries are judged as high power (up to 1,500 watts).

Finally, entrants in the single-transmitter and two-transmitter categories are limited to six (6) band changes (a) per clock hour and (b) per transmitter. Clock hours are explicitly defined as from 00-59 minutes of the hour, not as any 60 consecutive minutes. Band changes per transmitter are counted as any band change, i.e., going from 20 to 40 meters to grab a multiplier and then returning to 20 meters counts as two band changes.

Realtime Contest Scores on the Web

Whether competitive or casual, quite a few contest operators report that using an online scoreboard adds to their fun of contesting. In particular, many say that they experience increased motivation to keep focused and at the radio when propagation is less than ideal and new stations are hard to find.

Contesters operating alone and unassisted, as well as those operating assisted and at multi-operator stations, can use online scoreboards. No additional effort is required during the contest if using one of the popular contest logging programs and internet access is available.

Below we briefly recount the history of online scoreboards in radiosport and review some of the functionality that they provide to today's modern competitors. Former CQWW Contest Director Randy Thompson, K5ZD, describes his experience with real-time scoreboards in a sidebar.

The Origins of Online Scoreboards

At least one online scoreboard has been live and available to contesters for all major competitions since the CQWW Phone contest in October 2006. But the idea of a live scoreboard for radiosport events traces back to the Finnish operators who organized the World Radiosport Team Championship (WRTC) in 2002. During that competition, the referee at each competing station used a cell phone provided by sponsor Nokia to text the station’s score information hourly to a central database. The scores were updated and published on the web during the contest so that friends and family anywhere in the world could track the progress of each station.

Gerry Hull, W1VE (Photo A) had an idea better than texting. In the lead-up to the CQWW Phone and CW contests in 2006, Gerry released to contest logging software vendors a messaging protocol with an open programming interface.

Figure 2. The main score page of the Contest Online Scoreboard showing the scores of participants in the RAC Winter Contest, with band breakdowns selected. Information is refreshed every minute. Participants choose how often their scores are reported with a setting in their logging software. (contestonlinescore.com)
Figure 3. The main score page of the Online Contest Server, also showing the scores of participants in the RAC Winter Contest. The viewer can set the page refresh rate to 1, 3, 5, or 10 minutes. Participants choose how often their scores are reported with a setting in their logging software. (cqcontest.net)

Figure 4. The club page on the Contest Online Scoreboard. The Online Contest Server provides similar information. (contestonlinescore.com)
The software enabled gathering scores automatically at predetermined intervals directly from operators’ electronic logs. The three most popular contest logging programs — N1MM Logger, Win-Test, and WriteLog — implemented the interface in time for the 2006 contests.

On the receiving end, Gerry’s software collected participants’ scores in a central database configured to display scores in real time on a website that he named “getscores.org” (Figure 1). In this manner, scores organized by category were made available during the contest for viewing by everyone, competitor or observer alike. Gerry’s getscores.org website operated from 2006 through 2012 with help from Dave, K1TTT.

Online Scoreboards Operate With Many Logging Programs

Competitors today have two successor online scoreboards from which to choose. Participants easily can configure their logging programs to report scores to both scoreboards at the same time, which is recommended. The first is the Contest Online Scoreboard (“COSB”) that has been operated since 2017 by Victor, VA2WA (See Figure 2). It is accessed at: <https://contestonlinescore.com>. The other scoreboard, begun in 2010, is the Online Contest Server (“OCS”) run by Dimitry Zakharov, R4WW (Figure 3). It is accessed at: <https://tinyurl.com/y96o63sl>. Do note, however, that the OCS keeps a public “blacklist” and will not display scores from certain stations.

Thus, since 2006, any station anywhere in the world using one of the major logging programs and having Internet connectivity has had the ability to report its score in real time. Today, the option to report to one or both of the online scoreboards is a feature of all major contest-logging programs. Both scoreboards list on their websites the logging programs offline Scoreboards for Contesters

BY RANDY THOMPSON, K5ZD (FORMER CQWW CONTEST DIRECTOR)

Contesting traditionally has been a rather lonely sport. You sit in your shack, make QSOs, and then find out how you did at the end. That requires a lot of self-motivation to keep going when conditions are poor.

Over the past few years, I have been watching the online scoreboard while operating. It gives me an idea of how I am doing compared with others. There have been several times when I have operated many more hours than I intended to, just because I was chasing the next score above me on the scoreboard. That is especially true when I am operating part time. I sit down, see who is ahead of me, and then try to catch and pass them. It’s a fun little shot of excitement when the pass finally happens … especially if the other guy passes you back.

The ARRL and CQ have confirmed that watching a scoreboard during the contest does not put you in the Assisted category. It is also a great way to keep a multi-op team motivated and engaged.

Even the ops that go home to sleep can follow the progress of the team. All you need to do is set up your logging software and an Internet connection. One scoreboard I like to use is <http://contestonlinescore.com> (COSB), which is operated by Victor VA2WA. All the details about how to set up your logger are available at <https://tinyurl.com/yby7gsnb>.

If you set up your logging software to use the “score distributor server,” then your score will be sent to other scoreboards in addition to COSB. Once you have the logger broadcasting your score every 5 minutes or so, you can focus on operating the contest. The logger and scoreboard will work silently in the background. I usually keep a small browser window open on the screen that is showing the scores for my operating category. (Hint: Click on the small mobile phone icon near the top of the COSB page and it will take you to a page optimized for mobile phones. That uses minimum screen space to show calls and scores.)

Give the scoreboard a try and see if you like it. Scoreboards are definitely more fun when more people are contributing.
with which they will work and provide detailed information for configuring the logging software.

Scoreboards Offer Multiple Functions

Contest operators and anyone else with a web browser can view the scores being reported. On the receiving end, generally scores can be organized by category, club, defined team, or in other manners of interest (such as one’s own category within a defined geographic area). Scores can be viewed by the contestants during the contest in a simple browser window left open on the screen, or on a smartphone or tablet.

A competitor can view more than their own category, if desired. The viewing window(s) can be configured to observe multiple categories to track how competition is shaping up or how propagation is playing out. The newest innovation is a capability being tested by COSB that enables viewing online scores from within the logging software itself, rather than only through a separate web browser.

In addition to reporting scores organized by category, both online scoreboards offer club (Figure 4) and geographic tracking capabilities. Additional analytical tools also available on each website are useful for comparing scores (Figure 5).

The COSB allows operators to register a custom team of competitors and track each other’s progress during the contest. This might be an especially appealing option among low power or antenna-challenged friends, or for contesters operating in a specific geographic area. Using this capability might lessen the discouragement of seeing one’s score from Wisconsin (for example) being compared to those being compiled by superstations in the Northeast. There even is a capability on the COSB website to create a “private room” in which contesters’ scores can be viewed only by other members of the private room.

An especially useful capability allows scores to be reported to both scoreboards simultaneously. This capability is thanks to the efforts of Bruce Horn, WA7BNM. With one click or the copying of a link, scores can be reported from one’s logging software directly to a central distributor. The score will be forwarded to both online scoreboards from the distributor. Last year the scoreboards tried a method of exchanging scores directly among each other through the distributor, but this capability ended when the OCS withdrew from the arrangement in April 2018. So now it falls to each individual scoreboard user to directly implement score distribution to both servers, if desired. Once set up, the entire process occurs in the background with no demands on the operator during the contest. In place of one of the scoreboard links, the distributor link to report scores to both scoreboards automatically is <https://tinyurl.com/y6u2e6qd>. Alternatively, this link works: <http://scoredistributor.net>. N1MM Logger Plus users simply select from options under the configuration drop-down menu.

Single Operators “Unassisted” Also Can Use Online Scoreboards

Insofar as we can determine, all operators, including single operators in all categories, can both report and view scores during competitions. However, there is a wrinkle when it comes to CQ contests such as the CQWW.
The CQWW Rules FAQ conditions its permissive advice by stating that single operators “may view the scores on a live scoreboard site, but should not view the band breakdown information.” The CQWW FAQ is at <www.cqww.com/rules_faq.htm>.

The CQWW advice contrasts with permissible scoreboard use during ARRL contests. For ARRL contests, including the DX contests in February and March, operators are free to view any information on the scoreboards, including band breakdown information. This is because the ARRL views “spotting assistance” to be third-party provision of a callsign with time and frequency information. Although the band information on a live scoreboard may indicate, for example, that someone nearby has found 10 meters open, this does not constitute “spotting assistance” as defined for ARRL contests because specific callsign, time, and frequency information is not shown on scoreboards.

Closing Thoughts

Despite the existence of online scoreboards for over decade, many operators do not know about them, do not agree with their benefits, do not understand the ease of their use, or simply choose not to use them. Of course, there are some who do not have or do not use internet connectivity during contests.

Some suggest that select operators may view the scoreboard(s) during the contest but do not post their own scores. Other competitors consider viewing a scoreboard without posting to it to be bad sportsmanship.

Nevertheless, there are hundreds of scores being reported on both scoreboards during the major contests. There also appears to be a group of dedicated users who post their scores for even the smallest contests. Both the COSB and OCS support hundreds of contests, including most of the small North American contests. The COSB list of supported contests is at <https://tinyurl.com/y7gdfuy7>. The OCS list of supported contests is at <https://tinyurl.com/y7cyje84>.

The COSB appears to maintain accessibility to past contest information for only a short time, but the OCS allows access to scores dating back to its beginning in 2010. The OCS offers some interesting utilities for analyzing individual scores in a number of interesting ways.

There also has been experimentation with live streaming during contests on the OCS. The streaming facility appears to still be available for anyone interested. Configuration directions are at <https://tinyurl.com/y877b8x6>. I remember one past Scandinavian contest when webcams were used by multiple entrants. Some included the audio stream. The thought was that it might be interesting to non-contest participants, and even to non-hams, in much the same manner as many gamers tune into <twitch.tv> to watch other gamers.

Another innovation being tried is making awards to users based on being the highest scorer who reported scores consistently during the entire contest. The COSB awarded CQ magazine subscriptions and trophies for several events, and is soliciting sponsors to continue the program for the 2019 CQ WPX contests. If interested, information is at <https://tinyurl.com/y9ed8bkm>.

Finally, both scoreboards have tutorials to guide new users on connecting with various supported contest logging programs and the functions available on each website. The COSB tutorial is at <https://tinyurl.com/y6ug9vu7>. The OCS tutorial is at <https://tinyurl.com/y7f9ahpe>. Information on sending scores to both sites is above. – 73, Dave, K3ZJ

Figure 5. The Online Contest Server provides viewer-controlled graphing capabilities that can be used for post-contest analyses. Shown are the QSOs, points, and multipliers worked on 20 meters, graphed for the top six SOHP participants in the Winter RAC Contest. (cqcontest.net)
A Quick Look at Current Cycle 24 Conditions
(Data rounded to nearest whole number)

| Sunspots: | Observed Monthly, November 2018: 4 |
| 12-month smoothed, May 2018: 5 |
| 10.7 cm Flux: | Observed Monthly, November 2018: 69 |
| 12-month smoothed, May 2018: 70 |
| 12-month smoothed, May 2018: 8 |

Good 2018 CQWW CW Contest Conditions

The 2018 CQ World Wide DX CW Contest weekend of November 24-25 started off with great geomagnetic activity conditions. Geomagnetic activity was very quiet; the Middle-Latitude (Fredricksburg) A Index was 2 on day one, and 3 on day two. The High-Latitude (College) A Index was 1 and 3, respectively, while the Estimated Planetary A Index (Ap) was 4 and 3, making for a stable ionosphere. The sunspot count was 14 on day one and 15 on day two, so the 10.7-cm Radio Flux was 70 on both days. The background X-ray Flux was just above dead at level A1.0, so HF contest bands from 20 down to 80 were usable, and anything higher than that favored north-south and equatorial paths, but none were spectacular. How did you fare? What are your observations of conditions during this contest weekend? Please write.

Shortwave radio listeners and amateur radio operators look forward to new solar cycles because we know that the radio spectrum we love, from the top of the medium wave frequencies (MW or MF) to the bottom end of the Very High Frequencies (VHF), comes alive as a result of sunspot activity. The more active the Sun, the better conditions become on the high frequencies. Recently there have been hints of the next cycle, Solar Cycle 25. But with a rise in solar activity comes more activity of all kinds, including types that don’t help propagation, but can degrade conditions on our beloved HF spectrum.

A major source of degradation to HF radio propagation is the occurrence of coronal holes with high-speed solar wind and escaping plasma, and the resulting ionospheric depressions caused by these winds and the passing of that plasma. Coronal holes may release huge clouds of solar plasma, which is spewed out into space on the solar winds. When the Earth is under the influence of high-speed solar winds, we often experience periods of geomagnetic disturbances that can develop into significant storms. Of course, while this can degrade HF communications, these disturbances can also trigger aurora (Northern and Southern Lights), which in turn often creates conditions on VHF that radio hobbyists look forward to (aurora-mode propagation, for instance).

Fast solar winds originate in funnels within a coronal hole, with a speed of about 10 kilometers per second at a height of 20,000 kilometers above the sun’s photosphere. Just below the surface of the Sun there are large convection cells. Each cell has magnetic fields associated with it, which are concentrated in the network lanes by magneto-convexion, where the funnel necks are anchored. The plasma, while still

One Year Ago: A Quick Look at Solar Cycle Conditions
(Data rounded to nearest whole number)

| Sunspots: | Observed Monthly, November 2017: 3 |
| 12-month smoothed, May 2017: 14 |
| 10.7 cm Flux: | Observed Monthly, November 2017: 72 |
| 12-month smoothed, May 2017: 78 |
| 12-month smoothed, May 2017: 11 |

LAST-MINUTE FORECAST

Day-to-Day Conditions Expected for February 2019

Propagation Index Above Normal:	Expected Signal Quality
5-10,12,14-25,26	(4) A A
High Normal:	(3) B B
1-2,4,11,23-24,27-28	C C
Low Normal:	D-D
3,13,22	E E
Below Normal:	(1) 21
Disturbed:	n/a

Where expected signal quality is:
A—Excellent opening, exceptionally strong, steady signals greater than S9
B—Good opening, moderately strong signals varying between S6 and S9, with little fading or noise.
C—Fair opening, signals between moderately strong and weak, varying between S3 and S6, with some fading and noise.
D—Poor opening, with weak signals varying between S1 and S3, with considerable fading and noise.
E—No opening expected.

HOW TO USE THIS FORECAST

2. With the propagation index, use the above table to find the expected signal quality associated with the path opening for any given day of the month. For example, an opening on a given signal path between two stations as shown in the Propagation Charts with a propagation index of 4 will be fair on February 1 and 2, poor to fair on February 3, fair again on February 5, and so forth.
3. Alternatively, you may use the Last-Minute Forecast as a general guide to space weather and geomagnetic conditions through the month. When conditions are Above Normal, for example, the geomagnetic field should be quiet, and space weather should be mild. On the other hand, days marked as Disturbed will be riddled with geomagnetic storms. Propagation of radio signals in the HF spectrum will be affected by these conditions. In general, when conditions are High Normal to Above Normal, signals will be more reliable on a given path, when the ionosphere supports the path that is in consideration.
being confined in small loops, is brought by convection to the
funnels and then released there, like a bucket of water is
emptied into an open water channel.

The solar wind plasma is supplied by plasma stemming
from the many small magnetic loops, many only a few thou-
sand kilometers in height, crowding the funnel. Through mag-
netic reconnection, plasma is fed from all sides to the funnel,
where it may be accelerated and finally form the solar wind.

When the Sun unleashes this plasma, an event known as
a coronal mass ejection, it projects a billion-ton blast of plas-
ma into space at millions of miles per hour. The solar wind is
gusty, much like winds on Earth, and ranges in speed from
about 750,000 miles per hour (approximately 350 kilometers
per second), to 1.5 million miles per hour (700 kilometers per
second).

Since the solar wind is made up of electrically charged par-
ticles, it responds to magnetic fields that permeate the solar
atmosphere. Solar wind particles flow along the invisible lines
of magnetic force. When the magnetic field lines stretch
straight out into space, as they do in coronal hole regions,
the solar wind will move along these magnetic lines at a very
high rate of speed. But when the magnetic field lines bend
sharply back to the solar surface, like the pattern you see
with iron filings around a bar magnet, the solar wind emerges
relatively slowly.

When the interplanetary magnetic field lines are oriented
opposite to the orientation of Earth’s magnetosphere, the two
fields connect and allow solar wind particles to collide with
oxygen and nitrogen molecules in the upper atmosphere of
these ovals. This causes light photons to be emitted. When
the molecules and atoms are struck by these solar wind par-
ticles, the stripping of one or more of their electrons ionizes
them to such an extent that the ionized area is capable of
reflecting radio signals at very high frequencies. This ioniza-
tion occurs at an altitude of about 70 miles, very near the E-
layer of the ionosphere. The level of ionization depends on
the energy and amount of solar wind particles able to enter
the atmosphere.

While there is a correlation between visible and radio auro-
ra, radio aurora can exist without visual aurora. Statistically,
a diurnal variation of the frequency of radio aurora QSOs has
been identified that suggests two strong peaks, one near 6
p.m. and the second around midnight, local time.

VHF auroral echoes, or reflections, are most effective when
the angle of incidence of the signal from the transmitter, with
the geomagnetic field line, equals the angle of reflection from
the field line to the receiver. Radio aurora is observed almost
exclusively in a sector centered on magnetic north. The
strength of signals reflected from the aurora is dependent on
the wavelength when equivalent power levels are employed.
Six-meter reflections can be expected to be much stronger
than 2-meter reflections for the same transmitter output
power. The polarization of the reflected signals is nearly the
same as that of the transmitted signal.

The K index is a good indicator of the expansion of the auro-
ral oval, and the possible intensity of the aurora. When the
K index is higher than 5, most readers in the northern states
and in Canada can expect favorable aurora conditions. If the
K index reaches 8 or 9, it is highly possible for radio aurora
to be worked by stations as far south as California and Florida.

Late Winter Propagation

From the middle of February through early April, typical
equinocial propagation conditions can be expected on the
HF frequencies. This usually means a noticeable improve-
ment in conditions between the northern and southern hemi-
spheres. Look for improvements between the United States
and South America, Africa, Australasia, Antarctica, and parts
of Asia. Equinocial propagation occurs during the spring and
fall months, when the sun is most directly overhead at the
equator, producing similar ionospheric characteristics over
large areas of the world. It tends to maximize during sunrise
and sunset periods and over both short and long path openings.

But What About the (Lack of) Sunspots?

As I write this, we are at the very end of Solar Cycle 24, right at the edge of the solar cycle minimum between Cycle 24 and Cycle 25. How alive can the higher frequencies be with long-distance propagation?

It is always a surprise to the casual amateur radio operator when getting on a band like 10 meters during the solar minimum, and discovering that there is still some life on the band, beyond short-skip distances. The openings are not as long — either in distance or time — as during more active portions of a solar cycle, but they are still there. Typically, the weak solar activity we are observing right now does not support worldwide DXing on the highest of the HF bands for any significant length of time, if at all.

The lower HF bands can become real players, though, as veteran HF operators know. At the same time, longwave and medium-wave bands begin to suffer now with the seasonal increase of electrical-storm noise.

During the daylight hours, optimal DX propagation conditions are expected on 20 meters. The band is forecast to open to all areas of the world sometime during this period, though often with moderate to strong fading. Conditions on 17 and 15 may be good, too, but usually for much shorter distances than during peak solar cycle years. Conditions are expected to become optimal for an hour or two after sunrise and again during the late afternoon. For short-range (regional) paths, 40 meters should be usable during most of the daylight hours. With increasing hours of daylight during February, expect the HF bands to remain open for an hour or so longer into the early evening than during the winter months.

Daytime conditions on 10 and 12 meters will be less exciting. Openings will be possible for stations in low-latitudes using north-south paths, with no openings expected into Europe or the Far East.

During the early evening hours and to as late as midnight, seven bands should be available for DX openings: 15, 17, 20, 30, 40, 60, 80, and 160 meters. Fifteen and 17 meters should hold up for openings towards Central and South America and the Caribbean, the Pacific area, Far East, and parts of Asia. Better openings into many areas of the world may be possible on 20 meters during this period, with the strongest signals from southerly and westerly directions.

Good DX conditions are also forecast for 30, 40, and 80 meters for openings towards the east and the south. Openings in the same directions, but with higher noise levels and weaker signals, should also be possible on 160 meters.

Between midnight and sunrise, it should be a toss-up between 20, 30, and 40 meters for DX paths. These bands should open to many areas of the world with conditions favoring openings towards the south and the west. Expect similar conditions on 60, 75, and 80 meters, but with weaker signals and higher noise levels. Be sure to check 160 for some unusual DX openings towards the south and the west during this period. Conditions on the bands between 160 and 20 meters are expected to peak at local sunrise.

VHF Conditions

Trans-equatorial (TE) scatter propagation tends to increase during the equinoctial period and some 6-meter openings may be possible between 7 and 10 p.m. local time. The best bet for such openings is between the southern tier states and South America for paths approximately at right angles to the equator. An occasional TE opening may also be possible on 2 meters. Unlike F2-layer or Sporadic-E openings on 6 meters, TE openings are characterized by very weak signals with considerable flutter fading.

If you use Twitter, you can follow @hfradiospacewx for hourly updates that include the K index numbers. You can also check the numbers at <http://sunspotwatch.com>, where this columnist provides a wealth of current space weather details as well as links. Please report your observations of any notable propagation conditions, by writing this columnist via Twitter, or via

The most distinctive feature on the Sun during the period of October 31 through November 2, 2018, was a good-sized coronal hole at a slanted angle nearly centered on the face of the Sun. Coronal holes are magnetically open areas from which solar wind particles speed into space. They appear darker in this wavelength of extreme ultraviolet light. If these particles impact Earth’s magnetosphere, they will likely generate aurora near the Earth’s poles regions. (Courtesy of NASA/SDO)
Current Solar Cycle Progress

The Royal Observatory of Belgium reports that the monthly mean observed sunspot number for November 2018 was 3.5. The lowest daily sunspot value of 0 (zero) was recorded on November 1-7, 11, 20-23, and 27-30 — a total of 16 days with zero sunspots. The highest value of 15 was recorded on four days in the month, November 12, 16, 17, and 24. The 12-month running smoothed sunspot number centered on May 2018 is 4.5. A smoothed sunspot count of 6, give or take about 6 points, is expected for February 2019.

The Dominion Radio Astrophysical Observatory at Penticton, BC, Canada, reports a 10.7-cm observed monthly mean solar flux of 68.9 for November 2018. The 12-month smoothed 10.7-cm flux centered on May 2018 is 70.2. The predicted smoothed 10.7-cm solar flux for February 2019 is 61, give or take a few points.

The observed monthly mean planetary A-Index (A_p) for November 2018 is 6. The 12-month smoothed A_p index centered on May 2018 is 7.6.

Geomagnetic activity this month should be mostly quiet with fair to good propagation conditions, except for those days indicated in the Last-Minute Forecast during which we expect degraded propagation (remember that you can get an up-to-the-day Last-Minute Forecast on the main page at <http://SunSpotWatch.com>).

I welcome your thoughts, questions, and experiences regarding this fascinating science of propagation. You may email me, write me a letter, or catch me on the HF amateur bands. If you are on Facebook, check out <www.facebook.com/spacewx.hfradio> and <www.facebook.com/NW7US>. Speaking of Facebook — check out the CQ magazine fan page at <www.facebook.com/CQMag>.

– 73, Tomas, NW7US
Advertisers’ Index

February 2019

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Page</th>
<th>Phone</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOR U.S.A., Inc.</td>
<td>5</td>
<td>310-787-8615</td>
<td>www.aorusa.com</td>
</tr>
<tr>
<td>Advanced Specialties Inc.</td>
<td>87</td>
<td>201-VHF-2067</td>
<td>www.advancedspecialties.net</td>
</tr>
<tr>
<td>Air Boss — Innovative Tech.</td>
<td>29</td>
<td>252-249-1196</td>
<td>www.kr4loairboss.com</td>
</tr>
<tr>
<td>Alinco</td>
<td>59</td>
<td>209-900-1296</td>
<td>www.alinco.com</td>
</tr>
<tr>
<td>Amateur Radio Roundtable</td>
<td>73</td>
<td>901-570-2188</td>
<td>www.WSKUB.com</td>
</tr>
<tr>
<td>Arlan Communications</td>
<td>19</td>
<td>805-504-3944</td>
<td>www.arlancommunications.com</td>
</tr>
<tr>
<td>Breadboard Radio</td>
<td>81</td>
<td>803-606-1812</td>
<td>www.breadboardradio.com</td>
</tr>
<tr>
<td>Buddipole Antennas</td>
<td>47</td>
<td>503-591-8001</td>
<td>www.buddipole.com</td>
</tr>
<tr>
<td>CQ Amateur Radio Calender</td>
<td>89</td>
<td>516-681-2922</td>
<td>http://store.cq-amateur-radio.com</td>
</tr>
<tr>
<td>CQ Merchandise</td>
<td>37,53</td>
<td>516-681-2922</td>
<td>http://store.cq-amateur-radio.com</td>
</tr>
<tr>
<td>CW Easy/Success Easy</td>
<td>81</td>
<td>561-302-7731</td>
<td>www.success-is-easy.com</td>
</tr>
<tr>
<td>Communications Concepts, Inc.</td>
<td>95</td>
<td>937-426-8600</td>
<td>www.communication-concepts.com</td>
</tr>
<tr>
<td>Cutting Edge Enterprises</td>
<td>29</td>
<td>831-427-8197</td>
<td>www.powerportstore.com</td>
</tr>
<tr>
<td>DX Store</td>
<td>105</td>
<td>www.dxstore.com</td>
<td>EZ Hang</td>
</tr>
<tr>
<td>EZ Hang</td>
<td>87</td>
<td>540-286-0176</td>
<td>www.ezhang.com</td>
</tr>
<tr>
<td>Elecraft</td>
<td>27</td>
<td>831-763-4211</td>
<td>www.elecraft.com</td>
</tr>
<tr>
<td>Electric Radio Magazine</td>
<td>81</td>
<td>720-924-0171</td>
<td>www.ermag.com</td>
</tr>
<tr>
<td>HamTestOnline</td>
<td>29</td>
<td>888-857-6164</td>
<td>www.hamtestonline.com</td>
</tr>
<tr>
<td>International DX Association</td>
<td>105</td>
<td>www.indexa.org</td>
<td></td>
</tr>
<tr>
<td>KJI Electronics</td>
<td>29</td>
<td>973-571-1930</td>
<td>www.kjielectronics.com</td>
</tr>
<tr>
<td>Kenwood U.S.A. Corp.</td>
<td>Cov. II</td>
<td>310-639-4200</td>
<td>www.kenwoodusa.com</td>
</tr>
<tr>
<td>LDG</td>
<td>1, Cov. III</td>
<td>410-586-2177</td>
<td>www.ldgelectronics.com</td>
</tr>
<tr>
<td>PowerPort</td>
<td>29</td>
<td>831-427-8197</td>
<td>www.powerportstore.com</td>
</tr>
<tr>
<td>preciseRF</td>
<td>75</td>
<td>503-915-2490</td>
<td>www.precisionRF.com</td>
</tr>
<tr>
<td>QCWA</td>
<td>78</td>
<td>352-425-1097</td>
<td>www.qcwa.org</td>
</tr>
<tr>
<td>RF Parts</td>
<td>23</td>
<td>800-737-2787</td>
<td>www.rfparts.com</td>
</tr>
<tr>
<td>RT Systems</td>
<td>11,95</td>
<td>800-921-4834</td>
<td>www.rtsystems.com</td>
</tr>
<tr>
<td>REACT Int’l</td>
<td>70</td>
<td>301-316-2900</td>
<td>www.REACTintl.org</td>
</tr>
<tr>
<td>Skillman</td>
<td>93</td>
<td>www.skillman.com</td>
<td></td>
</tr>
<tr>
<td>SOTABEAMS</td>
<td>45</td>
<td>www.sotabeams.co.uk</td>
<td></td>
</tr>
<tr>
<td>SwapMyRig</td>
<td>81</td>
<td>850-385-3769</td>
<td>www.swapmyrigs.com</td>
</tr>
<tr>
<td>W2IHY Technologies</td>
<td>49</td>
<td>845-889-4253</td>
<td>www.w2ihy.com</td>
</tr>
<tr>
<td>W7DXX Remote</td>
<td>93</td>
<td>www.w7dxx.com</td>
<td></td>
</tr>
<tr>
<td>West Mountain Radio</td>
<td>61</td>
<td>262-522-6503</td>
<td>www.westmountainradio.com/CQ219</td>
</tr>
<tr>
<td>YLRL</td>
<td>51</td>
<td>www.ylrl.org</td>
<td></td>
</tr>
<tr>
<td>Yaesu</td>
<td>6,7,39,Cov IV</td>
<td>714-827-7600</td>
<td>www.yaesu.com</td>
</tr>
</tbody>
</table>

Let **CQ** help you get the most for your advertising dollar! Contact Dottie K, **CQ**'s Advertising Director at 516-681-2922 x 106 or via email at ads@cq-amateur-radio.com
One of the great things about ham radio is that you can take your hobby with you wherever you go. You’re not limited to the shack, but can operate mobile from your car, handheld just walking around with an HT, and of course portable in the field. Whether picnicking, camping, putting up tents, islands, lighthouses or mountain peaks on the air, or on Field Day, you can set up a portable station just about anywhere. And of course, when things go bad like a hurricane, earthquake or other natural or manmade disaster you can set up an emergency station near the action to help coordinate rescue and relief.

A lot of modern ham equipment is ideal for portable operation. You can get a 100 watt radio that’s about the size of a hardback book, weighs only a few pounds, and will run off a battery for hours. The hard part about portable operation is always the antenna. There are generally two ways to go: you can put up a temporary wire antenna like a dipole or long wire, or you can use a portable antenna like a vertical or a hamstick dipole. In any case, for efficient operation you’ll need a tuner to match the antenna to your radio.

LDG makes several tuners that are ideal for portable operation. They are light weight, compact, and can run on internal batteries so they require no external power source at all; they’re literally just plug and play. The Z-100Plus and Z-11ProII handle up to 125 watts, and the Z-817 up to 20 watts. And, they all include a free internal battery holder. These tuners use latching relays to hold the tuning settings, so in standby mode once tuning is complete they use essentially no power at all. A set of AA batteries will typically last for months of normal operation.

As you plan for the fun and utility of portable operation, complete your portable kit with an LDG tuner. Visit us on the web at www.ldgelectronics.com.

Zero Power Tuners

These tuners include a AA battery pack and are zero power once tuned!

Z-100Plus

Low cost and Portable, the Z-100Plus operates from any 7 to 18 volt DC source. AA batteries will run it for a year of normal use. Internal frequency counter stores tuning parameters for fast recall. Handles 100 watts SSB or 30 watts digital.

Z-11ProII

Designed for Battery Operation. Operates from 0.1 to 100 watts SSB or CW. 30 watts digital. Great for both QRP and standard 100 watts transceivers. Matches dipoles, verticals, inverted vees and most coax fed antennas.

Z-817

The ultimate QRP autotuner. Seamless integration to the Yaesu FT-817 and FT-818 provide one button tuning. 2000 memories covers 160 through 6 meters, 20 watts SSB, 5 watts digital.

Have you signed up your hamfest or show? Get your free LDG/MTC Hamfest Swag Bag!

Contact Christine at MTC christine@maintradingcompany.com
LDG/MTC Bringing Back Hamfests!
Your Main Hamfest Prize Center!
Wide-Coverage Transceivers
HF through VHF/UHF in One Radio

<table>
<thead>
<tr>
<th>Transmitter Frequency Bands</th>
<th>1.8MHz</th>
<th>3.5MHz</th>
<th>5.5MHz</th>
<th>7MHz</th>
<th>10.1MHz</th>
<th>14MHz</th>
<th>18MHz</th>
<th>21MHz</th>
<th>24MHz</th>
<th>28MHz</th>
<th>50MHz</th>
<th>70MHz</th>
<th>144MHz</th>
<th>430MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver Frequency</td>
<td>0.03/0.1MHz</td>
<td>0.3MHz</td>
<td>0.3MHz</td>
<td>0.3MHz</td>
<td>0.3MHz</td>
<td>0.3MHz</td>
<td>0.3MHz</td>
<td>0.3MHz</td>
<td>0.3MHz</td>
<td>0.3MHz</td>
<td>1MHz</td>
<td>1.8MHz</td>
<td>1.8MHz</td>
<td>1.8MHz</td>
</tr>
</tbody>
</table>

A Superb All-around Transceiver with a built-in real-time spectrum scope and superior basic operation

HF/50/144/430MHz 100W All Mode Transceiver

FT-991 A
Operating Modes: CW/SSB/AM/FM/C4FM

- Covers all-modes SSB/CW/AM/FM and C4FM digital
- Built in Real-Time Spectrum Scope with Multi-Color Waterfall Display
- IF DSP for Superb Interference Rejection
- 3.5-inch TFT Full-Color Touch Panel Display
- Advanced Support for C4FM Digital

*Specified performance: Amateur bands only
* Desktop Microphone & External Speaker (Optional)

The Smallest HF/VHF/UHF Mobile Transceiver Provides base station performance from a compact package

HF/50/144/430MHz 100W All Mode Transceiver

FT-857D
Operating Modes: CW/SSB/AM/FM
- Ultra-Compact Package (6.1” x 2.0” x 9.2”)
- The 4 Pole Roofing Filter (MCF) and 11 Band Pass Filter RF stages
- Large Radio Tuning Dial and Outstanding Ergonomics

The Ultimate Backpack Multi-Mode Portable Transceiver

HF/50/144/430MHz 6W All Mode Transceiver

FT-818ND
Operating Modes: CW/SSB/AM/FM
- Incredibly Small Size (5.3” x 1.5” x 6.5”) and Light Weight (under 2 pounds)
- High Frequency Stability (±0.5ppm) TCXO Included
- 6Watts of TX Output Power (AM: 2Watts)
- 1900mAh Ni-MH Battery Pack and Battery Charger Included
- AA Alkaline Battery Operation

For the latest Yaesu news, visit us on the Internet: http://www.yaesu.com